forked from connorsoohoo/Jess-s_Angels
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensorflow_svd.py
133 lines (94 loc) · 4.12 KB
/
tensorflow_svd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import tensorflow as tf
from tensorflow_utils import *
import numpy as np
import pandas as pd
import os
from time import clock
from utils import *
submit = False
model_name = 'tensorflow_svd'
ordering = 'mu'
# useful links:
# https://github.com/aymericdamien/TensorFlow-Examples
# https://github.com/songgc/TF-recomm
# http://surprise.readthedocs.io/en/stable/matrix_factorization.html
def SVD(n_samples, n_u, n_m, mean, lf=100, reg=0.02, learning_rate=0.005):
i = tf.placeholder(tf.int32, shape=[None])
j = tf.placeholder(tf.int32, shape=[None])
r = tf.placeholder(tf.float32, shape=[None])
batch = tf.shape(r)[0]
inits = tf.random_normal_initializer(mean=0.0, stddev=0.1, dtype=tf.float32)
mu = tf.constant([mean])
b_u = tf.get_variable('user_bias', shape=[n_u], initializer=inits)
b_m = tf.get_variable('movie_bias', shape=[n_m], initializer=inits)
emb_u = tf.get_variable('user_embedding', shape=[n_u, lf], initializer=inits)
emb_m = tf.get_variable('movie_embedding', shape=[n_m, lf], initializer=inits)
to_sum = []
slice = tf.nn.embedding_lookup
to_sum.append(tf.tile(mu, [batch]))
to_sum.append(slice(b_u, i))
to_sum.append(slice(b_m, j))
to_sum.append(tf.reduce_sum(tf.multiply(slice(emb_u, i), slice(emb_m, j)), 1))
# optimize for sum(squared error) with l2 regularization
l2 = tf.nn.l2_loss(slice(emb_u, i)) \
+ tf.nn.l2_loss(slice(emb_m, j))\
+ tf.nn.l2_loss(slice(b_u, i)) \
+ tf.nn.l2_loss(slice(b_u, j))
r_pred = tf.add_n(to_sum)
train_loss = tf.reduce_sum(tf.pow(r_pred-r,2)) + reg * l2
se = tf.reduce_sum(tf.pow(r_pred-r,2))
model = tf.train.GradientDescentOptimizer(learning_rate).minimize(train_loss)
return i, j, r, se, r_pred, model
print('Loading data...')
df = pd.read_csv(os.path.join('data', 'mu_train.csv'))
row = df['User Number'].values - 1
col = df['Movie Number'].values - 1
val = df['Rating'].values
n_samples = len(val)
df_val = pd.read_csv(os.path.join('data', 'mu_probe.csv'))
row_val = df_val['User Number'].values - 1
col_val = df_val['Movie Number'].values - 1
val_val = df_val['Rating'].values
n_samples_val = len(val_val)
n_users = 1 + np.max(row)
n_movies = 1 + np.max(col)
order = np.random.permutation(n_samples)
print('Training model...')
batch = 10000
epochs = 20
i, j, r, se, pred, model = SVD(n_samples, n_users, n_movies, np.mean(val), lf=200, reg=0.02, learning_rate=5e-3)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for e in range(epochs):
sq_errs = []
sq_errs_val = []
start = clock()
for prog, p in enumerate(range(int(n_samples // batch))):
idx = order[np.arange(batch) + prog * batch]
sess.run(model, feed_dict={i: row[idx], j: col[idx], r: val[idx]})
c = sess.run(se, feed_dict={i: row[idx], j: col[idx], r: val[idx]})
sq_errs.append(c)
for prog, p in enumerate(range(int(n_samples_val // batch))):
idx = np.arange(batch) + prog * batch
c = sess.run(se, feed_dict={i: row_val[idx], j: col_val[idx], r: val_val[idx]})
sq_errs_val.append(c)
end = clock()
train_rmse = np.sqrt(np.sum(sq_errs)/n_samples)
val_rmse = np.sqrt(np.sum(sq_errs_val)/n_samples_val)
t = end - start
print('Epoch %d\t\tTrain RMSE = %.4f\tVal RMSE = %.4f\t\tTime = %.4f' % (e, train_rmse, val_rmse, t))
if submit:
for dataset in ('qual', 'probe'):
print('Saving submission...')
df_qual = pd.read_csv(os.path.join('data', 'mu_' + dataset + '.csv'))
row_qual = df_qual['User Number'].values - 1
col_qual = df_qual['Movie Number'].values - 1
n_samples_qual = len(row_qual)
predictions = []
for prog, p in enumerate(range(1+ int(n_samples_qual // batch))):
li = prog * batch
ri = min((prog + 1) * batch, n_samples_qual)
pr = sess.run(pred, feed_dict={i: row_qual[li:ri], j: col_qual[li:ri], r: np.zeros(ri - li)})
predictions += list(pr)
save_submission(model_name + '_' + dataset, predictions, ordering)