forked from PeterKDunn/SRM-Textbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
12-Graphs.Rmd
executable file
·5435 lines (4568 loc) · 165 KB
/
12-Graphs.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Graphical summaries {#Graphs}
<!-- Introductions; easier to separate by format -->
```{r, child = if (knitr::is_html_output()) {'./introductions/12-Graphs-HTML.Rmd'} else {'./introductions/12-Graphs-LaTeX.Rmd'}}
```
## Introduction {#GraphsIntro}
To answer a RQ, a study is designed to collect data, because *data are the means by which the research question is answered*.
But before analysis begins, understanding, describing and summarising the collected data are important.
This chapter discusses the use of *graphs* to summarise data.
Graphs are produced to aid understanding of the data, so the message in the graphs should always be explained, especially regarding what it reveals about answering the RQ.
::: {.importantBox .important data-latex="{iconmonstr-warning-8-240.png}"}
The purpose of a graph is to display the information in the clearest, simplest possible way, to help the reader understand the message(s) in the data.
:::
In this chapter, graphs are discussed for
:::::: {.cols data-latex=""}
::: {.col data-latex="{0.48\textwidth}"}
* One quantitative variable (Sect.\ \@ref(GraphsOneQuant));
* One qualitative variable (Sect.\ \@ref(GraphsOneQual));
* One qualitative and quantitative variable (Sect.\ \@ref(GraphOneQualOneQuant));
:::
::: {.col data-latex="{0.01\textwidth}"}
\
<!-- an empty Div (with a white space), serving as
a column separator -->
:::
::: {.col data-latex="{0.51\textwidth}"}
* Two quantitative variables (Sect.\ \@ref(Scatterplots));
* Two qualitative variables (Sect.\ \@ref(TwoQualVars));
* Other types of graphs (Sect.\ \@ref(GraphsOther)).
:::
::::::
## One quantitative variable {#GraphsOneQuant}
For quantitative data, a graph shows the *distribution* of the data: the values taken by the variable, and how often they appear.
::: {.definition #Distribution name="Distribution"}
The *distribution* of a quantitative variable describes what values are present in the data, and how often those values appear.
:::
The graphs discussed in this section are appropriate for *continuous* quantitative data, but may also be useful for discrete quantitative data if many possible values are present.
Sometimes, *discrete* quantitative data with very few values are best graphed using graphs for qualitative data (Sect.\ \@ref(GraphsOneQual)).
Three different types of graphs can be used to show the distribution of one quantitative variable:
* *Stemplots* (or *stemplots*) (Sect.\ \@ref(StemAndLeafPlots)):
Best for small amounts of data; only sometimes useful.
* *Dot chart* (Sect.\ \@ref(DotChartsOneVar)):
Best for small amounts of data; good for moderate amounts of data.
* *Histogram* (Sect.\ \@ref(Histograms)):
Best for moderate to large amounts of data.
### Stemplots {#StemAndLeafPlots}
*Stemplots* (or *stem-and-leaf plots*) are best described and explained using an example.
Consider the data in
`r if( knitr::is_html_output() ) {
'Fig.\\ \\@ref(fig:BabyBoomDataHTML),'
} else
{
'Table\\ \\@ref(tab:BabyBoomDataLATEX) (which shows the first 10 of the total 44 observations).'
}`
The data give the weights (in kg) of babies born in a Brisbane hospital on one day [@mypapers:Dunn:dataset:1999; @data:Steele:BabyBoom].
The dataset also includes the gender of each baby, and the number of minutes after midnight of the birth.
The data are given in the order in which the births occurred.
<div style="float:right; width: 222x; border: 1px; padding:10px">
<img src="Illustrations/pexels-nappy-3569597.jpg" width="200px"/>
</div>
```{r}
data(BabyBoom)
BB <- BabyBoom
BB2 <- data.frame(Gender = factor(BB$Gender),
"Weight (in kg)" = round( BB$Weight/1000, 1),
Mins.Since.Midnight = BB$Mins.Since.Midnight)
```
```{r BabyBoomDataLATEX}
if( knitr::is_latex_output() ) {
T1 <- kable( BB2[1:5, ],
format = "latex",
longtable = FALSE,
row.names = FALSE,
digits = c(0, 1, 0),
escape = FALSE,
col.names = c("Gender",
"Weight (kg)",
"Time of birth"),
booktabs = TRUE) %>%
row_spec(0, bold = TRUE)
# column_spec(1, width = "10mm") %>%
# column_spec(2, width = "10mm") %>%
# column_spec(3, width = "10mm")
T2 <- kable( BB2[6:10, ],
format = "latex",
longtable = FALSE,
row.names = FALSE,
digits = c(0, 1, 0),
col.names = c("Gender",
"Weight (kg)",
"Time of birth"),
booktabs = TRUE) %>%
row_spec(0, bold = TRUE)
out <- knitr::kables(list(T1, T2),
format = "latex",
label = "BabyBoomDataLATEX",
caption = "The first ten observations (of 44) of the baby-births data. The 'time of birth is the number of minutes since midnight.") %>%
kable_styling(font_size = 10)
out2 <- prepareSideBySideTable(out,
numberOfTables = 2,
gap = "\\quad")
out2
}
```
```{r BabyBoomDataHTML, fig.cap="The baby-births data"}
if( knitr::is_html_output() ) {
DT::datatable( BB2,
fillContainer = FALSE, # Make more room, so we don't just have ten values
options = list(searching = FALSE), # Remove searching: See: https://stackoverflow.com/questions/35624413/remove-search-option-but-leave-search-columns-option
colnames = c("Gender",
"Weight (in kg)",
"Minutes since midnight"),
caption = "The baby-births data"
)
}
```
In a stemplot, part of each number is placed to the left of a vertical line (the *stem*), and the rest of each number to the right (the *leaf*).
The weights (quantitative)
`r if( knitr::is_html_output() ) {
'in Fig.\\ \\@ref(fig:BabyBoomDataHTML)'
} else
{
'in Table\\ \\@ref(tab:BabyBoomDataLATEX)'
}`
are given to one decimal place of a kilogram, so the whole number of kilograms is placed to the left (as a *stem*), and the first decimal place is placed on the right (as a *leaf*).
`r if (knitr::is_latex_output()) {
'Figure\\ \\@ref(fig:BBStem1) shows the stemplot starting to be built, and Fig.\\ \\@ref(fig:BBStem44) shows the final stemplot. (The online version has an animation.)'
} else {
'The animation below shows how the stemplot is constructed.'
}`
The first weight, of 1.7kg, is entered with the 1 to the right of the stem, and the 7 to the left: `1 | 7`.
Similarly, 2.1kg is entered as `2 | 1` and 2.2kg is entered as `2 | 2`, sharing the same stem as for 2.1kg.
The plots shows that most birthweights are 3-point-something kilograms.
```{r animation.hook="gifski", interval=0.85, dev=if (is_latex_output()){"pdf"}else{"png"}}
# BABYBOOM
if (knitr::is_html_output()){
Wts <- sort(BB$Weight)
DP2 <- function(x){format(round(x, 1), nsmall = 1) }
par(mfrow = c(2, 1),
mar = c(2, 3, 4, 1) + 0.1 )
for (i in (1:length(Wts))){
# Plot the data
datagrid.x <- 11
datagrid.y <- 4
plot( expand.grid(1:datagrid.x,
1:datagrid.y),
type = "n",
ylim = c(0.7, 4.3),
main = "The birthweights (in order)",
xlab = "",
ylab = "",
axes = FALSE)
cex.data <- 0.9
text( 1:datagrid.x,
rep(4, 11),
DP2(Wts[1:11]),
cex = cex.data )
text( 1:datagrid.x,
rep(3, 11),
DP2(Wts[12:22]),
cex = cex.data )
text( 1:datagrid.x,
rep(2, 11),
DP2(Wts[23:33]),
cex = cex.data )
text( 1:datagrid.x,
rep(1, 11),
DP2(Wts[34:44]),
cex = cex.data )
# Now highlight the observation being used
if (i <= 11) {
points( i, 4,
pch = 1,
col = plotDark,
lwd = 3,
cex = 4 )
}
if ( (i > 11) & (i <= 22)){
points( i - 11, 3,
pch = 1,
col = plotDark,
lwd = 3,
cex = 4 )
}
if ( (i > 22) & (i <= 233)){
points( i - 22, 2,
pch = 1,
col = plotDark,
lwd = 3,
cex = 4 )
}
if ( (i > 33) ){
points( i - 33, 1,
pch = 1,
col = plotDark,
lwd = 3,
cex = 4 )
}
# Produce the stemplot
stemgrid.x <- 34
stemgrid.y <- 4
stemcounts <- array(1, dim = stemgrid.y)
plot( expand.grid(1:stemgrid.x, 1:stemgrid.y),
type = "n",
xlab = "",
ylab = "",
main = "Stemplot of birthweights\n(2 | 6 means 2.6 kg)",
xlim = c(0, 34),
ylim = c(0.8, 4.2),
axes = FALSE)
if (Wts[i] < 2 ) {
mtext("1",
side = 2,
line = 1,
las = 1,
at = 4,
col = plotDark,
font = 2,
cex = 1.5)
mtext("2",
side = 2,
line = 1,
las = 1,
at = 3)
mtext("3",
side = 2,
line = 1,
las = 1,
at = 2)
mtext("4",
side = 2,
line = 1,
las = 1,
at = 1)
}
if ( (Wts[i] >= 2) & (Wts[i] < 3) ){
mtext("1",
side = 2,
line = 1,
las = 1,
at = 4)
mtext("2",
side = 2,
line = 1,
las = 1,
at = 3,
col = plotDark,
font = 2,
cex = 1.5)
mtext("3",
side = 2,
line = 1,
las = 1,
at = 2)
mtext("4",
side = 2,
line = 1,
las = 1,
at = 1)
}
if ( (Wts[i] >= 3) & (Wts[i] < 4) ){
mtext("1",
side = 2,
line = 1,
las = 1,
at = 4)
mtext("2",
side = 2,
line = 1,
las = 1,
at = 3)
mtext("3",
side = 2,
line = 1,
las = 1,
at = 2,
col = plotDark,
font = 2,
cex = 1.5)
mtext("4",
side = 2,
line = 1,
las = 1,
at = 1)
}
if ( Wts[i] >= 4 ){
mtext("1",
side = 2,
line = 1,
las = 1,
at = 4)
mtext("2",
side = 2,
line = 1,
las = 1,
at = 3)
mtext("3",
side = 2,
line = 1,
las = 1,
at = 2)
mtext("4",
side = 2,
line = 1,
las = 1,
at = 1,
col = plotDark,
font = 2,
cex = 1.5)
}
# Divide the stems and leaves
abline(v = 0,
lwd = 2)
# Plot leaves
for (j in (1:i) ){
if ( Wts[j] < 2) {
if (j != i) points( stemcounts[1], 4,
pch = substr( sprintf("%1.1f", Wts[j]), 3, 3))
if (j == i ) text( stemcounts[1], 4,
substr( sprintf("%1.1f", Wts[j]), 3, 3),
col = plotDark,
cex = 1.5,
font = 2)
stemcounts[1] <- stemcounts[1] + 1
}
if ( (Wts[j] >= 2) & (Wts[j] < 3) ) {
if (j != i ) points( stemcounts[2], 3,
pch = substr( sprintf("%1.1f", Wts[j]), 3, 3) )
if (j == i ) text( stemcounts[2], 3,
substr( sprintf("%1.1f", Wts[j]), 3, 3),
col = plotDark,
cex = 1.5,
font = 2)
stemcounts[2] <- stemcounts[2] + 1
}
if ( (Wts[j] >= 3) & (Wts[j] < 4) ) {
if (j != i ) points( stemcounts[3], 2,
pch = substr( sprintf("%1.1f", Wts[j]), 3, 3))
if (j == i ) text( stemcounts[3], 2,
substr( sprintf("%1.1f", Wts[j]), 3, 3),
col = plotDark,
cex = 1.5,
font = 2)
stemcounts[3] <- stemcounts[3] + 1
}
if ( Wts[j] >= 4 ) {
if (j != i ) points( stemcounts[4], 1,
pch = substr( sprintf("%1.1f", Wts[j]), 3, 3))
if (j == i ) text( stemcounts[4], 1,
substr( sprintf("%1.1f", Wts[j]), 3, 3),
col = plotDark,
cex = 1.5,
font = 2)
stemcounts[4] <- stemcounts[4] + 1
}
}
}
}
```
```{r BBStem1, fig.align="center", fig.width=5, fig.cap="Starting to make the stemplot for the baby-weight data: the first 4 observations added. The data are on the left; the stemplot during construction on the right.", fig.width=10, fig.height=3, out.width='95%'}
if (knitr::is_latex_output()){
Wts <- sort(BB$Weight)
DP2 <- function(x){ format(round(x, 1),
nsmall = 1) }
# par(width=5, height=5, mar=c(0, 0, 2, 0)+0.1, mfrow=c(2, 1))
par(mfrow = c(1, 2),
mar = c(3.85, 2, 3.5, 1) + 0.1)
i <- 4
# Plot the data
datagrid.x <- 11
datagrid.y <- 4
plot( expand.grid(1:datagrid.x, 1:datagrid.y),
type = "n",
ylim = c(0.7, 4.3),
xlim = c(1, 13),
main = "The birthweights (in order)",
xlab = "",
ylab = "",
axes = FALSE)
cex.data <- 0.9
text( 1:datagrid.x, rep(4, 11),
DP2(Wts[1:11]),
cex = cex.data )
text( 1:datagrid.x, rep(3, 11),
DP2(Wts[12:22]),
cex = cex.data )
text( 1:datagrid.x, rep(2, 11),
DP2(Wts[23:33]),
cex = cex.data )
text( 1:datagrid.x, rep(1, 11),
DP2(Wts[34:44]),
cex = cex.data )
# Now highlight the observation being used
if (i <= 11) {
points( i, 4,
pch = 1,
col = plotDark,
lwd = 3,
cex = 4 )
}
# Produce the stemplot
stemgrid.x <- 34
stemgrid.y <- 4
stemcounts <- array(1, dim = stemgrid.y)
plot( expand.grid(1:stemgrid.x, 1:stemgrid.y),
type = "n",
xlab = "2 | 6 means 2.6 kg",
ylab = "",
main = "Stemplot of birthweights",
xlim = c(0, 34),
ylim = c(0.8, 4.2),
axes = FALSE)
if (Wts[i] < 2 ) {
mtext("1",
side = 2,
line = 1,
las = 1,
at = 4,
col = plotDark,
font = 2,
cex = 1.5)
mtext("2",
side = 2,
line = 1,
las = 1,
at = 3)
mtext("3",
side = 2,
line = 1,
las = 1,
at = 2)
mtext("4",
side = 2,
line = 1,
las = 1,
at = 1)
}
if ( (Wts[i] >= 2) & (Wts[i] < 3) ){
mtext("1",
side = 2,
line = 1,
las = 1,
at = 4)
mtext("2",
side = 2,
line = 1,
las = 1,
at = 3,
col = plotDark,
font = 2,
cex = 1.5)
mtext("3",
side = 2,
line = 1,
las = 1,
at = 2)
mtext("4",
side = 2,
line = 1,
las = 1,
at = 1)
}
if ( (Wts[i] >= 3) & (Wts[i] < 4) ){
mtext("1",
side = 2,
line = 1,
las = 1,
at = 4)
mtext("2",
side = 2,
line = 1,
las = 1,
at = 3)
mtext("3",
side = 2,
line = 1,
las = 1,
at = 2,
col = plotDark,
font = 2,
cex = 1.5)
mtext("4",
side = 2,
line = 1,
las = 1,
at = 1)
}
if ( Wts[i] >= 4 ){
mtext("1",
side = 2,
line = 1,
las = 1,
at = 4)
mtext("2",
side = 2,
line = 1,
las = 1,
at = 3)
mtext("3",
side = 2,
line = 1,
las = 1,
at = 2)
mtext("4",
side = 2,
line = 1,
las = 1,
at = 1,
col = plotDark,
font = 2,
cex = 1.5)
}
# Divide the stems and leaves
abline(v = 0,
lwd = 2)
# Plot leaves
stemcounts <- rep(1, 4)
for (j in (1:4) ){
if ( Wts[j] < 2) {
if (j != i) points( stemcounts[1], 4,
pch = substr( as.character(Wts[j] - 1), 3, 3) )
if (j == i ) text( stemcounts[1], 4,
substr( as.character(Wts[j] - 1), 3, 3),
col = plotDark,
cex = 1.5,
font = 2)
stemcounts[1] <- stemcounts[1] + 1
}
if ( (Wts[j] >= 2) & (Wts[j] < 3) ) {
if (j != i ) points( stemcounts[2], 3,
pch = substr( as.character(Wts[j] - 2), 3, 3) )
if (j == i ) text( stemcounts[2], 3,
substr( as.character(Wts[j] - 2), 3, 3),
col = plotDark,
cex = 1.5,
font = 2)
stemcounts[2] <- stemcounts[2] + 1
}
if ( (Wts[j] >= 3) & (Wts[j] < 4) ) {
if (j != i ) points( stemcounts[3], 2,
pch = substr( sprintf("%1.1f", Wts[j]), 3, 3) )
if (j == i ) text( stemcounts[3], 2,
substr( sprintf("%1.1f", Wts[j]), 3, 3),
col = plotDark,
cex = 1.5,
font = 2)
stemcounts[3] <- stemcounts[3] + 1
}
if ( Wts[j] >= 4 ) {
if (j != i ) points( stemcounts[4], 1,
pch = substr( as.character(Wts[j] - 2), 3, 3) )
if (j == i ) text( stemcounts[4], 1,
substr( as.character(Wts[j] - 4), 3, 3),
col = plotDark,
cex = 1.5,
font = 2)
stemcounts[4] <- stemcounts[4] + 1
}
}
}
```
```{r BBStem44, fig.align="center", fig.cap="The final stemplot for the baby-weight data. The data are on the left; the final stemplot on the right.", fig.width=10, fig.height=3, out.width='100%' }
if (knitr::is_latex_output()){
Wts <- sort(BB$Weight)
DP2 <- function(x){format(round(x, 1), nsmall = 1) }
par(mfrow = c(1, 2),
mar = c(3.85, 2, 3.5, 1) + 0.1)
for (i in (length(Wts):length(Wts))){
# Plot the data
datagrid.x <- 11
datagrid.y <- 4
plot( expand.grid(1:datagrid.x, 1:datagrid.y),
type = "n",
ylim = c(0.7, 4.3),
xlim = c(1, 13),
main = "The birthweights (in order)",
xlab = "",
ylab = "",
axes = FALSE)
cex.data <- 0.9
text( 1:datagrid.x,
rep(4, 11),
DP2(Wts[1:11]),
cex = cex.data )
text( 1:datagrid.x,
rep(3, 11),
DP2(Wts[12:22]),
cex = cex.data )
text( 1:datagrid.x,
rep(2, 11),
DP2(Wts[23:33]),
cex = cex.data )
text( 1:datagrid.x,
rep(1, 11),
DP2(Wts[34:44]),
cex = cex.data )
# Produce the stemplot
stemgrid.x <- 34
stemgrid.y <- 4
stemcounts <- array(1, dim = stemgrid.y)
plot( expand.grid(1:stemgrid.x, 1:stemgrid.y),
type = "n",
xlab = "2 | 6 means 2.6 kg",
ylab = "",
main = "Stemplot of birthweights",
xlim = c(0, 34),
ylim = c(0.8, 4.2),
axes = FALSE)
mtext("1",
side = 2,
line = 1,
las = 1,
at = 4)
mtext("2",
side = 2,
line = 1,
las = 1,
at = 3)
mtext("3",
side = 2,
line = 1,
las = 1,
at = 2)
mtext("4",
side = 2,
line = 1,
las = 1,
at = 1)
# Divide the stems and leaves
abline(v = 0,
lwd = 2)
# Plot leaves
for (j in (1:44) ){
if ( Wts[j] < 2) {
if (j != i) points( stemcounts[1], 4,
pch = substr( as.character(Wts[j] - 1), 3, 3) )
stemcounts[1] <- stemcounts[1] + 1
}
if ( (Wts[j] >= 2) & (Wts[j] < 3) ) {
if (j != i ) points( stemcounts[2], 3,
pch = substr( as.character(Wts[j] - 2), 3, 3) )
stemcounts[2] <- stemcounts[2] + 1
}
if ( (Wts[j] >= 3) & (Wts[j] < 4) ) {
if (j != i ) points( stemcounts[3], 2,
pch = substr( sprintf("%1.1f", Wts[j]), 3, 3) )
stemcounts[3] <- stemcounts[3] + 1
}
if ( Wts[j] >= 4 ) {
points( stemcounts[4], 1,
pch = substr( as.character(Wts[j] - 4), 3, 3) )
stemcounts[4] <- stemcounts[4] + 1
}
}
}
}
```
For stemplots:
* Place the larger unit (e.g., kilograms) on the left (stems).
* Place the next smallest unit (e.g., first decimal place of a kilogram) on the right (leaves).
* Some data do not work well with stemplots.
* Sometimes, data may need suitable rounding before creating the stemplot (the baby weights were originally given to three decimal places).
* The numbers in each row should be evenly spaced, so that the numbers in the columns are under each other.
This means the length of each stem is proportional to the number of observations.
* Within each stem, the observations are *ordered* so patterns can be seen.
* Add an explanation for reading the stemplot.
For example, the stemplot for the baby-birth data says '2 | 6 means 2.6kg'.
For instance, '2 | 6' could mean 26kg, or 0.26kg, or 2lb 6oz.
::: {.example #StemLeafPlots name="Stemplots"}
A study of krill [@data:Greenacre2016:reporting] produced 15 measurements of the number of eggs.
The stemplot
`r if (knitr::is_latex_output()) {
'(Fig.\\ \\@ref(fig:KrillStem44); the online version has an animation)'
} else {
'in the animation below shows the stemplot being constructed, and'
}`
shows that the number of eggs is usually under 10, but occasionally a large number of eggs are seen.
For the purposes of the stemplot, single-digit observations are treated as `00`, `01`, `02` and so on, using `0` as the stem.
:::
```{r animation.hook="gifski", interval=0.85, dev=if (is_latex_output()){"pdf"}else{"png"}}
if (knitr::is_html_output()){
#KRILL
Eggs <- c(1, 0, 1, 2, 2, 8, 16, 31, 0, 0, 20, 0, 26, 1, 3)
Eggs <- sort(Eggs)
# par(width=5, height=5, mar=c(0, 0, 2, 0)+0.1, mfrow=c(2, 1))
par(mfrow = c(2, 1),
mar = c(3.85, 3, 4, 1) + 0.1)
for (i in (1:length(Eggs))){
# Plot the data
datagrid.x <- 5
datagrid.y <- 3
plot( expand.grid(1:datagrid.x,
1:datagrid.y),
type = "n",
ylim = c(0, 3.3),
main = "The egg counts (in order)",
xlab = "",
ylab = "",
axes = FALSE)
text( 1:datagrid.x,
rep(3, 5),
as.character(Eggs[1:5]) )
text( 1:datagrid.x,
rep(2, 5),
as.character(Eggs[6:10]) )
text( 1:datagrid.x,
rep(1, 5),
as.character(Eggs[11:15]) )
# Now highlight the observation being used
if (i <= 5) {
points( i, 3,
pch = 1,
col = plotDark,
lwd = 3,
cex = 4 )
}
if ( (i > 5) & (i <= 10)){
points( i - 5, 2,
pch = 1,
col = plotDark,
lwd = 3,
cex = 4 )
}
if ( (i > 10) ){
points( i - 10, 1,
pch = 1,
col = plotDark,
lwd = 3,
cex = 4 )
}
# Produce the stemplot
stemgrid.x <- 12
stemgrid.y <- 4
stemcounts <- array(1, dim = stemgrid.y)
plot( expand.grid(1:stemgrid.x,
0:stemgrid.y),
type = "n",
xlab = "1|6 means 16 eggs",
ylab = "",
main = "Stemplot of egg counts of krill",
xlim = c(0, 11),
ylim = c(-0.2, 3.2),
axes = FALSE)
if (Eggs[i] < 10 ) {
mtext("0",
side = 2,
line = 1,
las = 1,
at = 3,
col = plotDark,
font = 2,
cex = 1.5)
mtext("1",
side = 2,
line = 1,
las = 1,
at = 2)
mtext("2",
side = 2,
line = 1,
las = 1,
at = 1)
mtext("3",
side = 2,
line = 1,
las = 1,
at = 0)
}
if ( (Eggs[i] >= 10) & ( Eggs[i] < 20) ){
mtext("0",
side = 2,
line = 1,
las = 1,
at = 3)
mtext("1",
side = 2,
line = 1,
las = 1,
at = 2,
col = plotDark,
font = 2,
cex = 1.5)
mtext("2",
side = 2,
line = 1,
las = 1,
at = 1)
mtext("3",
side = 2,
line = 1,
las = 1,
at = 0)
}
if ( (Eggs[i] >= 20) & (Eggs[i] < 30) ){
mtext("0",
side = 2,
line = 1,
las = 1,
at = 3)
mtext("1",
side = 2,
line = 1,
las = 1,
at = 2)
mtext("2",
side = 2,
line = 1,
las = 1,
at = 1,
col = plotDark,
font = 2,
cex = 1.5)
mtext("3",
side = 2,
line = 1,
las = 1,
at = 0)
}
if ( Eggs[i] >= 30 ){
mtext("0",
side = 2,
line = 1,
las = 1,
at = 3)
mtext("1",
side = 2,
line = 1,
las = 1,
at = 2)
mtext("2",
side = 2,
line = 1,
las = 1,
at = 1)
mtext("3",
side = 2,
line = 1,
las = 1,
at = 0,
col = plotDark,
font = 2,
cex = 1.5)
}
# Divide the stems and leaves
abline(v = 0,
lwd = 2)
# Plot leaves
for (j in (1:i) ){
if ( Eggs[j] < 10) {
if ( j != i) points( stemcounts[1],
3,
pch = as.character(Eggs[j]))
if (j == i ) text( stemcounts[1], 3,
as.character(Eggs[j]),
col = plotDark,
cex = 1.5,
font = 2)
stemcounts[1] <- stemcounts[1] + 1
}
if ( (Eggs[j] >= 10) & (Eggs[j] < 20) ) {
if (j != i ) points( stemcounts[2],
2,
pch = as.character(Eggs[j] - 10) )
if (j == i ) text( stemcounts[2],
2,
as.character(Eggs[j] - 10),
col = plotDark,
cex = 1.5,
font = 2)
stemcounts[2] <- stemcounts[2] + 1
}
if ( (Eggs[j] >= 20) & (Eggs[j] < 30) ) {
if (j != i ) points( stemcounts[3],
1,
pch = as.character(Eggs[j] - 20))
if (j == i ) text( stemcounts[3],
1,
as.character(Eggs[j] - 20),
col = plotDark,
cex = 1.5,
font = 2)
stemcounts[3] <- stemcounts[3] + 1
}
if ( Eggs[j] >= 30 ) {
if (j != i ) points( stemcounts[4],
0,
pch = as.character(Eggs[j] - 30))
if (j == i ) text( stemcounts[4],
0,
as.character(Eggs[j] - 30),
col = plotDark,
cex = 1.5,
font = 2)
stemcounts[4] <- stemcounts[4] + 1
}
}
}