-
Notifications
You must be signed in to change notification settings - Fork 1
/
hlm.Rmd
430 lines (321 loc) · 9.92 KB
/
hlm.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
---
title: "Hierarchical Linear Modeling"
output:
html_document:
code_folding: show
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
echo = TRUE,
error = TRUE,
comment = "",
class.source = "fold-show")
```
# Preamble
## Install Libraries
```{r, class.source = "fold-hide"}
#install.packages("remotes")
#remotes::install_github("DevPsyLab/petersenlab")
```
## Load Libraries
```{r, message = FALSE, warning = FALSE, class.source = "fold-hide"}
library("petersenlab")
library("lme4")
library("nlme")
library("lmerTest")
library("MASS")
library("MCMCglmm")
library("performance")
library("ggplot2")
```
## Import Data
```{r, eval = FALSE, class.source = "fold-hide"}
mydata <- read.csv("https://osf.io/cqn3d/download")
```
```{r, include = FALSE}
mydata <- read.csv("./data/nlsy_math_long.csv") #https://osf.io/cqn3d/download
```
## Simulate Data
```{r, class.source = "fold-hide"}
set.seed(52242)
mydata$outcome <- rpois(nrow(mydata), 4)
```
# Terms
These models go by a variety of different terms:
- hierarchical linear model (HLM)
- multilevel model (MLM)
- mixed effects model
- mixed model
# Overview
https://isaactpetersen.github.io/Principles-Psychological-Assessment/reliability.html#mixedModels
# Pre-Model Computation
It can be helpful to center the age/time variable so that the intercept in a growth curve model has meaning.
For instance, we can subtract the youngest participant age to set the intercepts to be the earliest age in the sample.
```{r}
mydata$ageYears <- mydata$age / 12
mydata$ageMonthsCentered <- mydata$age - min(mydata$age, na.rm = TRUE)
mydata$ageYearsCentered <- mydata$ageMonthsCentered / 12
```
# Estimator: ML or REML
For small sample sizes, restricted maximum likelihood (REML) is preferred over maximum likelihood (ML).
ML preferred when there is a small number (< 4) of fixed effects; REML is preferred when there are more (> 4) fixed effects.
The greater the number of fixed effects, the greater the difference between REML and ML estimates.
Likelihood ratio (LR) tests for REML require exactly the same fixed effects specification in both models.
So, to compare models with different fixed effects with an LR test (to determine whether to include a particular fixed effect), ML must be used.
In contrast to the maximum likelihood estimation, REML can produce unbiased estimates of variance and covariance parameters, variance estimates are larger in REML than ML.
To compare whether an effect should be fixed or random, use REML.
To simultaneously compare fixed and random effects, use ML.
# Linear Mixed Models {#linear}
The following models are models that are fit in a linear mixed modeling framework.
## Growth Curve Models {#gcm}
### Plot Observed Growth Curves
```{r}
ggplot(
data = mydata,
mapping = aes(
x = ageYears,
y = math,
group = id)) +
geom_line() +
scale_x_continuous(
name = "Age (Years)") +
scale_y_continuous(
name = "Math Score")
```
### `lme4`
```{r}
linearMixedModel <- lmer(
math ~ female + ageYearsCentered + (ageYearsCentered | id),
data = mydata,
REML = FALSE, #for ML
na.action = na.exclude,
control = lmerControl(optimizer = "bobyqa"))
summary(linearMixedModel)
```
#### Protoypical Growth Curve
```{r}
newData <- expand.grid(
female = c(0, 1),
ageYears = c(
min(mydata$ageYears, na.rm = TRUE),
max(mydata$ageYears, na.rm = TRUE))
)
newData$ageYearsCentered <- newData$ageYears - min(newData$ageYears)
newData$sex <- NA
newData$sex[which(newData$female == 0)] <- "male"
newData$sex[which(newData$female == 1)] <- "female"
newData$sex <- as.factor(newData$sex)
newData$predictedValue <- predict(
linearMixedModel,
newdata = newData,
re.form = NA
)
ggplot(
data = newData,
mapping = aes(x = ageYears, y = predictedValue, color = sex)) +
xlab("Age (Years)") +
ylab("Math Score") +
geom_line()
```
#### Individuals' Growth Curves
```{r}
mydata$predictedValue <- predict(
linearMixedModel,
newdata = mydata,
re.form = NULL
)
ggplot(
data = mydata,
mapping = aes(x = ageYears, y = predictedValue, group = factor(id))) +
xlab("Age (Years)") +
ylab("Math Score") +
geom_line()
```
#### Individuals' Trajectories Overlaid with Prototypical Trajectory
```{r}
ggplot(
data = mydata,
mapping = aes(x = ageYears, y = predictedValue, group = factor(id))) +
xlab("Age (Years)") +
ylab("Math Score") +
geom_line() +
geom_line(
data = newData,
mapping = aes(x = ageYears, y = predictedValue, group = sex, color = sex),
linewidth = 2)
```
### `nlme`
```{r}
linearMixedModel_nlme <- lme(
math ~ female + ageYearsCentered,
random = ~ 1 + ageYearsCentered|id,
data = mydata,
method = "ML",
na.action = na.exclude)
summary(linearMixedModel_nlme)
```
## Intraclass Correlation Coefficent {#icc}
```{r}
icc(linearMixedModel)
icc(linearMixedModel_nlme)
```
# Generalized Linear Mixed Models {#generalized}
https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html (archived at https://perma.cc/9RFS-BCE7; source code: https://github.com/bbolker/mixedmodels-misc/blob/master/glmmFAQ.rmd)
## `lmer`
```{r}
generalizedLinearMixedModel <- glmer(
outcome ~ female + ageYearsCentered + (ageYearsCentered | id),
family = poisson(link = "log"),
data = mydata,
na.action = na.exclude)
summary(generalizedLinearMixedModel)
```
## `MASS`
```{r}
glmmPQLmodel <- glmmPQL(
outcome ~ female + ageYearsCentered,
random = ~ 1 + ageYearsCentered|id,
family = poisson(link = "log"),
data = mydata)
summary(glmmPQLmodel)
```
## `MCMCglmm`
```{r}
MCMCglmmModel <- MCMCglmm(
outcome ~ female + ageYearsCentered,
random = ~ us(ageYearsCentered):id,
family = "poisson",
data = na.omit(mydata[,c("id","outcome","female","ageYearsCentered")]))
summary(MCMCglmmModel)
```
# Nonlinear Mixed Models {#nonlinear}
```{r}
nonlinearModel <- nlme(
height ~ SSasymp(age, Asym, R0, lrc),
data = Loblolly,
fixed = Asym + R0 + lrc ~ 1,
random = Asym ~ 1)
summary(nonlinearModel)
```
# Robust Mixed Models
To evaluate the extent to which a finding could driven by outliers, this could be done in a number of different ways, such as:
- identifying and excluding influential observations based on DFBETAS or Cook’s distance (Nieuwenhuis, Grotenhuis, & Pelzer, 2012)
- fitting mixed models using rank-based estimation (Bilgic & Susmann, 2013; Finch, 2017) or robust estimating equations (Koller, 2016)
- estimating robust standard errors using a sandwich estimator (Wang & Merkle, 2018)
# Assumptions
The within-group errors:
1. are independent
2. are identically normally distributed
3. have mean zero and variance sigma-squared
4. are independent of the random effects
The random effects:
5. are normally distributed
6. have mean zero and covariance matrix Psi (not depending on the group)
7. are independent for different groups
# Examining Model Assumptions
## Resources
Pinheiro and Bates (2000) book (p. 174, section 4.3.1)
https://stats.stackexchange.com/questions/77891/checking-assumptions-lmer-lme-mixed-models-in-r (archived at https://perma.cc/J5GC-PCUT)
## QQ Plots
Make QQ plots for each level of the random effects.
Vary the level from 0, 1, to 2 so that you can check the between- and within-subject residuals.
```{r}
qqnorm(linearMixedModel_nlme,
~ ranef(., level = 1))
```
## PP Plots
```{r}
ppPlot(linearMixedModel)
```
## QQ Plot of residuals
```{r}
qqnorm(resid(linearMixedModel))
qqline(resid(linearMixedModel))
```
## Plot residuals
```{r}
plot(linearMixedModel)
```
## Plot residuals by group (in the example below, level 2 represents the individual)
```{r}
plot(linearMixedModel,
as.factor(id) ~ resid(.),
abline = 0,
xlab = "Residuals")
```
## Plot residuals by levels of a predictor
```{r}
plot(linearMixedModel_nlme,
resid(., type = "p") ~ fitted(.) | female) #type = "p" specifies standardized residuals
```
## Can model heteroscedasticity of the within-group error with the weights argument
```{r}
linearMixedModel_nlmeVarStructure <- lme(
math ~ female + ageYearsCentered,
random = ~ 1 + ageYearsCentered|id,
weights = varIdent(form = ~ 1 | female),
method = "ML",
data = mydata,
na.action = na.exclude)
summary(linearMixedModel_nlmeVarStructure)
```
## Plot observed and fitted values
```{r}
plot(linearMixedModel,
math ~ fitted(.))
```
## Plot QQ plot of residuals by levels of a predictor
```{r}
qqnorm(linearMixedModel_nlme, ~ resid(.) | female)
qqnorm(linearMixedModel_nlme, ~ resid(.))
```
## QQ plot of random effects
Make QQ plots for each level of the random effects.
Vary the level from 0, 1, to 2 so that you can check the between- and within-subject residuals.
```{r}
qqnorm(linearMixedModel_nlme,
~ ranef(., level = 0))
qqnorm(linearMixedModel_nlme,
~ ranef(., level = 1))
qqnorm(linearMixedModel_nlme,
~ ranef(., level = 2))
```
## QQ plot of random effects by levels of a predictor
```{r}
qqnorm(linearMixedModel_nlme,
~ ranef(., level = 1) | female)
```
## Pairs plot
```{r}
pairs(linearMixedModel_nlme)
pairs(linearMixedModel_nlme,
~ ranef(., level = 1) | female)
```
## Variance functions for modeling heteroscedasticity
- `varFixed`: fixed variance
- `varIdent`: different variances per stratum
- `varPower`: power of covariate
- `varExp`: exponential of covariate
- `varConstPower`: constant plus power of covariate
- `varComb`: combination of variance functions
## Correlation structures for modeling dependence
- `corCompSymm`: compound symmetry
- `corSymm`: general
- `corAR1`: autoregressive of order 1
- `corCAR1`: continuous-time AR(1)
- `corARMA`: autoregressive-moving average
- `corExp`: exponential
- `corGaus`: Gaussian
- `corLin`: linear
- `corRatio`: rational quadratic
- `corSpher`: spherical
# Power Analysis {#powerAnalysis}
- https://aguinis.shinyapps.io/ml_power/
- https://www.causalevaluation.org/power-analysis.html
- https://powerupr.shinyapps.io/index/
- https://koumurayama.shinyapps.io/tmethod_mlm/
- https://webpower.psychstat.org/wiki/models/index
# Session Info
```{r, class.source = "fold-hide"}
sessionInfo()
```