-
Notifications
You must be signed in to change notification settings - Fork 0
/
q2_neural.py
85 lines (71 loc) · 2.67 KB
/
q2_neural.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import random
from q1_softmax import softmax
from q2_sigmoid import sigmoid, sigmoid_grad
from q2_gradcheck import gradcheck_naive
def forward_backward_prop(data, labels, params, dimensions):
"""
Forward and backward propagation for a two-layer sigmoidal network
Compute the forward propagation and for the cross entropy cost,
and backward propagation for the gradients for all parameters.
"""
### Unpack network parameters (do not modify)
ofs = 0
Dx, H, Dy = (dimensions[0], dimensions[1], dimensions[2])
W1 = np.reshape(params[ofs:ofs+ Dx * H], (Dx, H)) # (Dx, H)
ofs += Dx * H
b1 = np.reshape(params[ofs:ofs + H], (1, H)) #(1, H)
ofs += H
W2 = np.reshape(params[ofs:ofs + H * Dy], (H, Dy)) #(H, Dy)
ofs += H * Dy
b2 = np.reshape(params[ofs:ofs + Dy], (1, Dy)) #(1, Dy)
### YOUR CODE HERE: forward propagation (using notations of Lecture 5)
# x = z1 = a1
z2 = np.dot(data, W1) + b1 # (1, H)
a2 = sigmoid(z2) # (1, H)
z3 = np.dot(a2, W2) + b2 #(1, Dy)
a3 = softmax(z3) #(1, Dy)
S = - np.sum(np.log(np.sum(a3 * labels, axis=1)))
### END YOUR CODE
### YOUR CODE HERE: backward propagation
delta3 = a3 - labels # (1, Dy)
gradW2 = np.dot(a2.T, delta3) # (H, Dy)
delta2 = sigmoid_grad(a2)*np.dot(delta3, W2.T) # (1, H)
gradW1 = np.dot(data.T, delta2) # (H, H)
gradb2 = np.sum(delta3, axis = 0)
gradb1 = np.sum(delta2, axis = 0)
### END YOUR CODE
### Stack gradients (do not modify)
grad = np.concatenate((gradW1.flatten(), gradb1.flatten(),
gradW2.flatten(), gradb2.flatten()))
return S, grad
def sanity_check():
"""
Set up fake data and parameters for the neural network, and test using
gradcheck.
"""
print "Running sanity check..."
N = 20
dimensions = [10, 5, 10]
data = np.random.randn(N, dimensions[0]) # each row will be a datum
labels = np.zeros((N, dimensions[2]))
for i in xrange(N):
labels[i,random.randint(0,dimensions[2]-1)] = 1
params = np.random.randn((dimensions[0] + 1) * dimensions[1] + (
dimensions[1] + 1) * dimensions[2], )
gradcheck_naive(lambda params: forward_backward_prop(data, labels, params,
dimensions), params)
def your_sanity_checks():
"""
Use this space add any additional sanity checks by running:
python q2_neural.py
This function will not be called by the autograder, nor will
your additional tests be graded.
"""
print "Running your sanity checks..."
### YOUR CODE HERE
# raise NotImplementedError
### END YOUR CODE
if __name__ == "__main__":
sanity_check()
your_sanity_checks()