-
Notifications
You must be signed in to change notification settings - Fork 9
/
ModelRun.r
240 lines (210 loc) · 10.1 KB
/
ModelRun.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
library(parallel)
progress <- FALSE
# Custom version of pbapply (library pbapply) for writing the calibration status on "progess.txt"
pbapply_custom <- function (X, FUN, ..., cl = NULL)
{
FUN <- match.fun(FUN)
if (!is.vector(X) || is.object(X))
X <- as.list(X)
if (!length(X))
return(lapply(X, FUN, ...))
if (!is.null(cl)) {
if (identical(cl, "future")) {
if (!requireNamespace("future") || !requireNamespace("future.apply")) {
warning("You need some packages for cl='future' to work: install.packages('future.apply')")
cl <- NULL
}
}
else {
if (.Platform$OS.type == "windows") {
if (!inherits(cl, "cluster"))
cl <- NULL
}
else {
if (inherits(cl, "cluster")) {
if (length(cl) < 2L)
cl <- NULL
}
else {
if (cl < 2)
cl <- NULL
}
}
}
}
nout <- as.integer(getOption("pboptions")$nout)
if (is.null(cl)) {
if (!dopb())
return(lapply(X, FUN, ...))
Split <- splitpb(length(X), 1L, nout = nout)
B <- length(Split)
pb <- startpb(0, B)
on.exit(closepb(pb), add = TRUE)
rval <- vector("list", B)
for (i in seq_len(B)) {
rval[i] <- list(lapply(X[Split[[i]]], FUN, ...))
setpb(pb, i)
}
}
else {
if (inherits(cl, "cluster")) {
PAR_FUN <- if (isTRUE(getOption("pboptions")$use_lb))
parallel::parLapplyLB
else parallel::parLapply
if (!dopb())
return(PAR_FUN(cl, X, FUN, ...))
Split <- splitpb(length(X), length(cl), nout = nout)
B <- length(Split)
pb <- startpb(0, B)
on.exit(closepb(pb), add = TRUE)
rval <- vector("list", B)
for (i in seq_len(B)) {
rval[i] <- list(PAR_FUN(cl, X[Split[[i]]], FUN,
...))
setpb(pb, i)
write.table(i/B*100,file = paste0(OD,'process.txt'), row.names = FALSE, col.names = FALSE)
}
}
else if (identical(cl, "future")) {
requireNamespace("future")
requireNamespace("future.apply")
if (!dopb())
return(future.apply::future_lapply(X, FUN, ...,
future.stdout = FALSE))
Split <- splitpb(length(X), future::nbrOfWorkers(),
nout = nout)
B <- length(Split)
pb <- startpb(0, B)
on.exit(closepb(pb), add = TRUE)
rval <- vector("list", B)
for (i in seq_len(B)) {
rval[i] <- list(future.apply::future_lapply(X[Split[[i]]],
FUN, ..., future.stdout = FALSE))
setpb(pb, i)
}
}
else {
if (!dopb())
return(parallel::mclapply(X, FUN, ..., mc.cores = as.integer(cl),
mc.silent = TRUE))
Split <- splitpb(length(X), as.integer(cl), nout = nout)
B <- length(Split)
pb <- startpb(0, B)
on.exit(closepb(pb), add = TRUE)
rval <- vector("list", B)
for (i in seq_len(B)) {
rval[i] <- list(parallel::mclapply(X[Split[[i]]],
FUN, ..., mc.cores = as.integer(cl), mc.silent = TRUE))
setpb(pb, i)
}
}
}
rval <- do.call(c, rval, quote = TRUE)
names(rval) <- names(X)
rval
}
##This is the function to run the DSSAT model.
ModelRun<-function(WD, OD, DSSATD, GD, CropName, GenotypeFileName, CultivarID, RoundOfGLUE, TotalParameterNumber,
NumberOfModelRun, RandomMatrix, CoresAvailable, EcotypeID, EcotypeParameters, ModelSelect, CTR)
{
CTR
ListModelRun<- 1:NumberOfModelRun
ParameterSetIndex<-c();
run_simulations <<- function(i) {
core_dir_name <<- paste0(OD,'/core_',Sys.getpid())
if(!dir.exists(core_dir_name)){
dir.create(core_dir_name)
write('',paste0(core_dir_name,'/Evaluate_output.txt'))
file.copy(paste0(OD,'/DSSBatch.v48'), core_dir_name)
file.copy(paste0(GD,'/',GenotypeFileName,'.CUL'), core_dir_name)
file.copy(paste0(GD,'/',GenotypeFileName,'.ECO'), core_dir_name) #added to run on HiPerGator
file.copy(paste0(GD,'/',GenotypeFileName,'.SPE'), core_dir_name) #added to run on HiPerGator
file.copy(paste0(GD,'/',GenotypeFileName,'.CUL'), OD) #adding a copy since GLUE needs to read the header after ModelRun.r
writeLines(CTR,paste0(core_dir_name,"/DSCSM048.CTR")) #writing control file in each core directory
}
setwd(core_dir_name);
#Set the path for program to call the bath file running.
################### 1. Model Run ##################
ModelRunNumber<- i
#print(ModelRunNumber)
eval(parse(text = paste("source('",WD,"/GenotypeChange.r')",sep = '')));#Tell the location of the function.
GenotypeChange(GD, DSSATD, core_dir_name, CropName, GenotypeFileName, CultivarID, TotalParameterNumber, ModelRunNumber, RandomMatrix, EcotypeID, EcotypeParameters); #Change the genotype file.
#cat(RandomMatrix[ModelRunNumber,])
#check which OS GLUE is running in order to run the simulations
if(.Platform$OS.type == "windows"){
eval(parse(text = paste("try(system('",DSSATD,"/DSCSM048.EXE ",ModelSelect," B ",OD,"DSSBatch.v48 DSCSM048.CTR'))",sep = '')));
}else{
eval(parse(text = paste("try(system('",DSSATD,"/dscsm048 ",ModelSelect," B ","DSSBatch.v48 DSCSM048.CTR'))",sep = '')));
}
#Call the batch file to run the model.
if (file.exists("Evaluate.OUT")== F)
{
write('',paste0(core_dir_name,'/Error_list_',Sys.getpid(),'.txt'))
cat(paste0("An error occurred in ", core_dir_name, " when using the following cultivar coefficients:\n"), file = paste0(core_dir_name,"/Error_list_",Sys.getpid(),".txt"),append = T)
eval(parse(text = paste("cat(",list(RandomMatrix[ModelRunNumber,(1:(TotalParameterNumber -EcotypeParameters))]),", file = '",core_dir_name,"/Error_list_",Sys.getpid(),".txt',append = T)",sep = '')));
#next;
if(EcotypeParameters>0){
cat(paste0("and ecotype coefficients:\n"), file = paste0(core_dir_name,"/Error_list_",Sys.getpid(),".txt"),append = T)
eval(parse(text = paste("cat(",list(RandomMatrix[ModelRunNumber,(TotalParameterNumber -EcotypeParameters:TotalParameterNumber)]),"\n, file = '",core_dir_name,"/Error_list_",Sys.getpid(),".txt',append = T)",sep = '')));
}
}else
{
eval(parse(text = paste("EvaluateFile<-readLines('",core_dir_name,"/Evaluate_output.txt',n=-1)",sep = '')));
##If there is any errors in the Evaluate.OUT file.
Error1Address<-match('NaN',EvaluateFile);
Error2Address<-match("********",EvaluateFile);
if (is.na(Error1Address) & is.na(Error2Address)){
eval(parse(text = paste("EvaluateOut<<-readLines('",core_dir_name,"/Evaluate.OUT',n=-1)",sep = '')));
#Read the output in evaluate file.
eval(parse(text = paste("write(EvaluateOut, file = '",core_dir_name,"/Evaluate_output.txt',append = F)",sep = '')));
#Save the evaluate output, but replace the previous output.
################### 2. Data Processing ##################
FileLength<-length(EvaluateFile);
TreatmentNumber<-(FileLength-3);
#eval(parse(text = paste("write('.', file = '",core_dir_name,"/Error_list_",Sys.getpid(),".txt',append = T)",sep = '')));
eval(parse(text = paste("source('",WD,"/OutputProcessing.r')",sep = '')));
OutputProcessing(WD, core_dir_name, CropName, RoundOfGLUE, ModelRunNumber);
#Call the function to process the output data of evaluate and plant growth in each model run.
ParameterSetIndex<-c(ParameterSetIndex,i);
#Select the parameter set that match the requirement, i.e. do not have bad outputs.
}else{
write('',paste0(core_dir_name,'/Error_list_',Sys.getpid(),'.txt'))
cat(paste0("Missing values found in ", core_dir_name, " when using the following combination of cultivar coefficients:\n"), file = paste0(core_dir_name,"/Error_list_",Sys.getpid(),".txt"),append = T)
eval(parse(text = paste("cat(",list(RandomMatrix[ModelRunNumber,(1:(TotalParameterNumber -EcotypeParameters))]),'\n',", file = '",core_dir_name,"/Error_list_",Sys.getpid(),".txt',append = T)",sep = '')));
if(EcotypeParameters>0){
cat(paste0("\nand ecotype coefficients:\n"), file = paste0(core_dir_name,"/Error_list_",Sys.getpid(),".txt"),append = T)
eval(parse(text = paste("cat(",list(RandomMatrix[ModelRunNumber,(TotalParameterNumber -EcotypeParameters:TotalParameterNumber)]),'\n',", file = '",core_dir_name,"/Error_list_",Sys.getpid(),".txt',append = T)",sep = '')));
}
}
}
if(RoundOfGLUE==1)
{
RealRandomSets<-RandomMatrix[ParameterSetIndex,];
eval(parse(text = paste("write(t(RealRandomSets), file = '",core_dir_name,"/RealRandomSets_1.txt',,append = T, ncolumns =TotalParameterNumber)",sep = '')));
##Get and save really used random parameter sets as a table for future use.
} else
{
RealRandomSets<-RandomMatrix[ParameterSetIndex,];
eval(parse(text = paste("write(t(RealRandomSets), file = '",core_dir_name,"/RealRandomSets_2.txt',,append = T, ncolumns =TotalParameterNumber)",sep = '')));
}
}
#
#mclapply(ListModelRun, run_simulations, mc.cores = CoresAvailable)
cl <- makePSOCKcluster(CoresAvailable)
setDefaultCluster(cl)
clusterExport(NULL, c('ModelSelect', 'run_simulations','WD', 'OD', 'DSSATD', 'GD', 'CropName',
'GenotypeFileName', 'CultivarID', 'RoundOfGLUE', 'TotalParameterNumber',
'NumberOfModelRun', 'RandomMatrix', 'EcotypeID', 'EcotypeParameters'))
if(progress==TRUE){
list.of.packages <- c("pbapply")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if(length(new.packages)) install.packages(new.packages)
library(pbapply)
pbo = pboptions(type="txt")
#pblapply(ListModelRun, function(z) run_simulations(z), cl = cl)
pbapply_custom(ListModelRun, function(z) run_simulations(z), cl = cl)
}else{
parLapply(NULL, ListModelRun, function(z) run_simulations(z))
}
stopCluster(cl)
}