forked from 9p15p/Evaluate_VSOD_inDV16style
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluator.py
200 lines (180 loc) · 7.21 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import time
import numpy as np
import torch
from torchvision import transforms
from tqdm import tqdm
class Eval_thread():
def __init__(self, loader, method, dataset):
self.loader = loader
self.method = method
self.dataset = dataset
def run(self):
print('eval: {} dataset with {} method.'.format(self.dataset, self.method))
start_time = time.time()
beta2 = 0.3
alpha = 0.5
mae_dict = dict()
F_dict = dict()
E_dict = dict()
S_dict = dict()
with torch.no_grad():
for v_name, preds, gts in tqdm(self.loader):
preds = preds.cuda()
gts = gts.cuda()
####### MAE ######
mean = torch.abs(preds - gts).mean()
assert mean == mean, "mean is NaN" # for Nan
mae_dict[v_name] = mean
# F Measure Score
f_score = 0
# E Measure Score
e_score = torch.zeros(256).cuda()
# S Measure Score
sum_Q = 0
for pred, gt in zip(preds, gts):
# F-Measure
prec, recall = self._eval_pr(pred, gt, 256)
f_score += (1 + beta2) * prec * recall / (beta2 * prec + recall+1e-10)
assert (f_score == f_score).all() # for Nan
# E-Measure
e_score += self._eval_e(pred, gt, 256)
# S-Measure
y = gt.mean()
if y < 1e-4:
x = pred.mean()
Q = 1.0 - x
elif y == 1:
x = pred.mean()
Q = x
else:
gt[gt >= 0.5] = 1
gt[gt < 0.5] = 0
Q = alpha * self._S_object(pred, gt) + (1 - alpha) * self._S_region(pred, gt)
if Q.item() < 0:
Q = torch.FloatTensor([0.0])[0].cuda()
assert Q==Q,'Q is NaN'
sum_Q += Q
# F-Measure
f_score /= len(preds)
F_dict[v_name] = f_score
# E-Measure
e_score /= len(preds)
E_dict[v_name] = e_score
# S-Measure
S_video = sum_Q / len(preds)
S_dict[v_name] = S_video
# MAE
MAE_videos_max = torch.mean(torch.tensor(list(mae_dict.values()))).item()
# Max F-Measure
F_videos = torch.stack(list(F_dict.values())).mean(dim=0)
F_videos_max = F_videos.max().item()
# Max E-Measure
E_videos = torch.stack(list(E_dict.values())).mean(dim=0)
E_videos_max = E_videos.max().item()
# S-Measure
S_videos_mean = torch.mean(torch.tensor(list(S_dict.values()))).item()
return '[cost:{:.2f}s] {} dataset with {} method get {:.3f} MAE, {:.3f} max F-measure, {:.3f} max E-measure, {:.3f} S-measure..'.format(
time.time() - start_time, self.dataset, self.method, MAE_videos_max, F_videos_max, E_videos_max, S_videos_mean)
def _eval_e(self, y_pred, y, num):
h, w = y.shape
pred = y_pred.expand(num, h, w)
gt = y.expand(num, h, w)
thlist = torch.linspace(0, 1 - 1e-10, num).cuda().reshape(num, 1)
mask = thlist.expand(num, h*w).reshape(num, h, w)
pred_threshold = torch.where(pred >= mask, 1, 0).float()
fm = pred_threshold - torch.mean(pred_threshold, dim=(1,2)).reshape(num, 1).expand(num, h*w).reshape(num, h, w)
gt = gt - torch.mean(gt, dim=(1,2)).reshape(num, 1).expand(num, h*w).reshape(num, h, w)
align_matrix = 2 * gt * fm / (gt * gt + fm * fm + 1e-20)
enhanced = ((align_matrix + 1) * (align_matrix + 1)) / 4
score = torch.sum(enhanced, dim=(1,2)) / (y.numel() - 1 + 1e-20)
return score
def _eval_pr(self, y_pred, y, num):
h, w = y.shape
pred = y_pred.expand(num, h, w)
gt = y.expand(num, h, w)
thlist = torch.linspace(0, 1 - 1e-10, num).cuda().reshape(num, 1)
mask = thlist.expand(num, h*w).reshape(num, h, w)
pred_threshold = torch.where(pred >= mask, 1, 0).float()
tp = torch.sum(pred_threshold * gt, dim=(1,2))
prec, recall = tp / (torch.sum(pred_threshold, dim=(1,2)) + 1e-20), tp / (torch.sum(gt, dim=(1,2)) + 1e-20)
return prec, recall
def _S_object(self, pred, gt):
fg = torch.where(gt == 0, torch.zeros_like(pred), pred)
bg = torch.where(gt == 1, torch.zeros_like(pred), 1 - pred)
o_fg = self._object(fg, gt)
o_bg = self._object(bg, 1 - gt)
u = gt.mean()
Q = u * o_fg + (1 - u) * o_bg
return Q
def _object(self, pred, gt):
temp = pred[gt == 1]
x = temp.mean()
sigma_x = temp.std()
score = 2.0 * x / (x * x + 1.0 + sigma_x + 1e-20)
return score
def _S_region(self, pred, gt):
X, Y = self._centroid(gt)
gt1, gt2, gt3, gt4, w1, w2, w3, w4 = self._divideGT(gt, X, Y)
p1, p2, p3, p4 = self._dividePrediction(pred, X, Y)
Q1 = self._ssim(p1, gt1)
Q2 = self._ssim(p2, gt2)
Q3 = self._ssim(p3, gt3)
Q4 = self._ssim(p4, gt4)
Q = w1 * Q1 + w2 * Q2 + w3 * Q3 + w4 * Q4
# print(Q)
return Q
def _centroid(self, gt):
rows, cols = gt.size()[-2:]
gt = gt.view(rows, cols)
if gt.sum() == 0:
X = torch.eye(1).cuda() * round(cols / 2)
Y = torch.eye(1).cuda() * round(rows / 2)
else:
total = gt.sum()
i = torch.from_numpy(np.arange(0, cols)).cuda().float()
j = torch.from_numpy(np.arange(0, rows)).cuda().float()
X = torch.round((gt.sum(dim=0) * i).sum() / total)
Y = torch.round((gt.sum(dim=1) * j).sum() / total)
return X.long(), Y.long()
def _divideGT(self, gt, X, Y):
h, w = gt.size()[-2:]
area = h * w
gt = gt.view(h, w)
LT = gt[:Y, :X]
RT = gt[:Y, X:w]
LB = gt[Y:h, :X]
RB = gt[Y:h, X:w]
X = X.float()
Y = Y.float()
w1 = X * Y / area
w2 = (w - X) * Y / area
w3 = X * (h - Y) / area
w4 = 1 - w1 - w2 - w3
return LT, RT, LB, RB, w1, w2, w3, w4
def _dividePrediction(self, pred, X, Y):
h, w = pred.size()[-2:]
pred = pred.view(h, w)
LT = pred[:Y, :X]
RT = pred[:Y, X:w]
LB = pred[Y:h, :X]
RB = pred[Y:h, X:w]
return LT, RT, LB, RB
def _ssim(self, pred, gt):
gt = gt.float()
h, w = pred.size()[-2:]
N = h * w
x = pred.mean()
y = gt.mean()
sigma_x2 = ((pred - x) * (pred - x)).sum() / (N - 1 + 1e-20)
sigma_y2 = ((gt - y) * (gt - y)).sum() / (N - 1 + 1e-20)
sigma_xy = ((pred - x) * (gt - y)).sum() / (N - 1 + 1e-20)
aplha = 4 * x * y * sigma_xy
beta = (x * x + y * y) * (sigma_x2 + sigma_y2)
if aplha != 0:
Q = aplha / (beta + 1e-20)
elif aplha == 0 and beta == 0:
Q = 1.0
else:
Q = 0
return Q