diff --git a/HISTORY.md b/HISTORY.md index ed5ccb7..d2800bc 100644 --- a/HISTORY.md +++ b/HISTORY.md @@ -1,5 +1,10 @@ # History +## 0.9.0 (2022-07-07) + +* Add `segments` property to the `PanImg` model containing the unique values in the image as a tuple of `int`s. + These are only calculated for `int` or `uint` type `SimpleITKImage`s, for any other output type `segments` are set to `None`. + ## 0.8.3 (2022-06-22) * Fix installation on Windows diff --git a/panimg/models.py b/panimg/models.py index 32a54ce..2024b68 100644 --- a/panimg/models.py +++ b/panimg/models.py @@ -7,6 +7,8 @@ from typing import Any, Dict, List, NamedTuple, Optional, Set, Tuple from uuid import UUID, uuid4 +import numpy as np +import SimpleITK from pydantic import BaseModel, validator from pydantic.dataclasses import dataclass from SimpleITK import GetArrayViewFromImage, Image, WriteImage @@ -15,6 +17,17 @@ logger = logging.getLogger(__name__) +MASK_TYPE_PIXEL_IDS = [ + SimpleITK.sitkInt8, + SimpleITK.sitkInt16, + SimpleITK.sitkInt32, + SimpleITK.sitkInt64, + SimpleITK.sitkUInt8, + SimpleITK.sitkUInt16, + SimpleITK.sitkUInt32, + SimpleITK.sitkUInt64, +] + class ColorSpace(str, Enum): GRAY = "GRAY" @@ -62,6 +75,8 @@ class PatientSex(str, Enum): "DA": lambda v: datetime.date(int(v[:4]), int(v[4:6]), int(v[6:8])) } +MAXIMUM_SEGMENTS_LENGTH = 32 + class ExtraMetaData(NamedTuple): keyword: str # DICOM tag keyword (eg. 'PatientID') @@ -140,6 +155,7 @@ class PanImg: series_instance_uid: str = "" study_description: str = "" series_description: str = "" + segments: Optional[Tuple[int, ...]] = None @dataclass(frozen=True) @@ -257,6 +273,18 @@ def add_value_range_meta_data(cls, image: Image): # noqa: B902, N805 return image + @property + def segments(self) -> Optional[Tuple[int, ...]]: + if self.image.GetPixelIDValue() not in MASK_TYPE_PIXEL_IDS: + return None + + segments = np.unique(GetArrayViewFromImage(self.image)) + + if len(segments) <= MAXIMUM_SEGMENTS_LENGTH: + return tuple(segments) + else: + return None + @property def color_space(self) -> ColorSpace: return ITK_COLOR_SPACE_MAP[self.image.GetNumberOfComponentsPerPixel()] @@ -330,6 +358,7 @@ def save(self, output_directory: Path) -> Tuple[PanImg, Set[PanImgFile]]: voxel_height_mm=self.voxel_height_mm, voxel_depth_mm=self.voxel_depth_mm, eye_choice=self.eye_choice, + segments=self.segments, **self.generate_extra_metadata(), ) @@ -387,6 +416,7 @@ def save(self, output_directory: Path) -> Tuple[PanImg, Set[PanImgFile]]: window_center=None, window_width=None, eye_choice=self.eye_choice, + segments=None, **{md.field_name: md.default_value for md in EXTRA_METADATA}, ) diff --git a/pyproject.toml b/pyproject.toml index 9314595..06e8442 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "panimg" -version = "0.8.3" +version = "0.9.0" description = "Conversion of medical images to MHA and TIFF." license = "Apache-2.0" authors = ["James Meakin "] diff --git a/tests/test_models.py b/tests/test_models.py index 476e70f..0778069 100644 --- a/tests/test_models.py +++ b/tests/test_models.py @@ -1,10 +1,13 @@ import logging +from pathlib import Path import pytest +from panimg import image_builders from panimg.exceptions import ValidationError from panimg.image_builders.metaio_utils import load_sitk_image from panimg.models import EXTRA_METADATA, ExtraMetaData, SimpleITKImage +from panimg.panimg import _build_files from tests import RESOURCE_PATH @@ -157,3 +160,68 @@ def test_sitk_image_value_range( assert not result.image.HasMetaDataKey(tag) else: assert float(result.image.GetMetaData(tag)) == pytest.approx(value) + + +@pytest.mark.parametrize( + "src_image,builder,segments", + [ + ( + "image_min10_max10.mha", + image_builders.image_builder_mhd, + ( + -10, + -9, + -8, + -7, + -6, + -5, + -4, + -3, + -2, + -1, + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + ), + ), + ( # Too many values + "dicom_2d/cxr.dcm", + image_builders.image_builder_dicom, + None, + ), + ( # Image type is vector of ints + "test_rgb.png", + image_builders.image_builder_fallback, + None, + ), + ( # Tiffs are always None + "valid_tiff.tif", + image_builders.image_builder_tiff, + None, + ), + ], +) +def test_segments( + src_image, + builder, + segments, + tmpdir_factory, +): + files = {RESOURCE_PATH / src_image} + output_dir = Path(tmpdir_factory.mktemp("output")) + result = _build_files( + builder=builder, files=files, output_directory=output_dir + ) + assert result.consumed_files == files + assert len(result.new_images) == 1 + + image = result.new_images.pop() + assert image.segments == segments