-
Notifications
You must be signed in to change notification settings - Fork 23
/
scnn.py
1080 lines (877 loc) · 47.1 KB
/
scnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Author: Hans Pinckaers
MIT License
"""
import copy
import math
import os
from dataclasses import dataclass
from itertools import repeat
from typing import NamedTuple, Union, List
import numpy as np
import torch
import torch.autograd
import torch.backends
import torch.nn.functional
from torch._six import container_abcs
from torch.nn.modules.conv import _ConvNd
from torch.nn.modules.utils import _pair
from torch.utils.cpp_extension import load
from tqdm import tqdm
# from torch.nn.grad import _grad_input_padding
if '1.6' in torch.__version__: # type:ignore
def forward_amp_decorator(func):
return torch.cuda.amp.custom_fwd(func) # type:ignore
def backward_amp_decorator(func):
return torch.cuda.amp.custom_bwd(func) # type:ignore
from torch.cuda.amp import autocast
else:
def forward_amp_decorator(func):
return func
def backward_amp_decorator(func):
return func
# Load and compile cpp code to call cudnn conv2d backward function
dirname = os.path.dirname(__file__)
filename = os.path.join(dirname, "cpp_functions.cpp")
cpp_functions = load(name="cpp_functions", sources=[filename], verbose=False)
# inspired by torch/nn/modules/utils.py
def _ntuple(n):
def parse(x, default=0):
if isinstance(x, container_abcs.Iterable):
if len(x) == n:
return x
elif len(x) == n-1:
return tuple([default, *x])
else:
return tuple(repeat(x[0], n))
return tuple(repeat(x, n))
return parse
_triple = _ntuple(3)
# Utility named tuples, makes code more readable
class Sides(NamedTuple):
left: int
top: int
right: int
bottom: int
@dataclass
class Box:
y: int
height: int
x: int
width: int
sides: Union[Sides, None]
class IOShape(NamedTuple):
batch: int
channels: int
height: int
width: int
@dataclass
class Lost:
top: int
left: int
bottom: int
right: int
def __str__(self):
return 'Lost(top:%2.1f, left:%2.1f, bottom:%2.1f, right:%2.1f)' \
% (self.top, self.left, self.bottom, self.right)
class StreamingConv2dF(torch.autograd.Function):
@staticmethod
@forward_amp_decorator
def forward(ctx, inpt, weight, bias, stride, padding, dilation, groups, grad_lost, seen_indices, output_stride, input_loc):
ctx.save_for_backward(inpt, weight, bias)
ctx.stride = stride
ctx.padding = padding
ctx.dilation = dilation
ctx.groups = groups
ctx.grad_lost = grad_lost
ctx.seen_indices = seen_indices
ctx.output_stride = output_stride
ctx.input_loc = input_loc
return torch.nn.functional.conv2d(inpt, weight, bias, stride, padding, dilation, groups)
@staticmethod
@backward_amp_decorator
def backward(ctx, grad_output):
inpt, weight, bias = ctx.saved_variables
grad = grad_weight = grad_bias = None
stride = ctx.stride
padding = ctx.padding
dilation = ctx.dilation
groups = ctx.groups
sides = ctx.input_loc.sides # Type: Sides
seen_indices = ctx.seen_indices
grad_lost = ctx.grad_lost # Type: Lost
output_stride = ctx.output_stride
grad_bias = None
kernel_size = weight.shape[-1]
if ctx.needs_input_grad[0]:
# TODO: performance improvements possible by only backpropping valid input
# grad_input_padding = _grad_input_padding(grad_output, inpt.shape, stride, padding, (weight.shape[2], weight.shape[3]))
# TODO: use this!?
grad_in = cpp_functions.backward_input(inpt.shape, grad_output, weight.to(inpt.dtype), padding,
stride, dilation, groups,
torch.backends.cudnn.benchmark, torch.backends.cudnn.deterministic)
else:
grad_in = None
grad = grad_output
lost_top = grad_lost.top if not sides.top else 0
lost_bottom = grad_lost.bottom if not sides.bottom else 0
lost_left = grad_lost.left if not sides.left else 0
lost_right = grad_lost.right if not sides.right else 0
valid_grad = grad[:, :, lost_top:grad.shape[H_DIM] - lost_bottom,
lost_left:grad.shape[W_DIM] - lost_right]
stride, kernel_size, padding = _triple(stride), _triple(kernel_size), _triple(padding)
output_stride = output_stride * torch.tensor(stride)
input_loc = ctx.input_loc
# Move the location according to how many pixels have been trimmed
# this will be the location of the valid gradient of this layer in relation
# to the actual gradient in a normal backpass
data_loc_y = int(input_loc.y // output_stride[1]) + lost_top
data_loc_x = int(input_loc.x // output_stride[2]) + lost_left
data_loc = Box(data_loc_y, 0,
data_loc_x, 0,
input_loc.sides)
# Calculate which part of the gradient is 'new'
old_value_indices = seen_indices
new_output_box, updated_total_indices = StreamingCNN._new_value_indices(valid_grad.shape,
data_loc,
old_value_indices)
# Update inplace
seen_indices.y = updated_total_indices.y
seen_indices.height = updated_total_indices.height
seen_indices.x = updated_total_indices.x
seen_indices.width = updated_total_indices.width
seen_indices.sides = updated_total_indices.sides
if new_output_box.height > 0 and new_output_box.width > 0:
relevant_grad = valid_grad[:, :,
new_output_box.y:new_output_box.y + new_output_box.height,
new_output_box.x:new_output_box.x + new_output_box.width]
input_y = (new_output_box.y + lost_top) * stride[1]
input_x = (new_output_box.x + lost_left) * stride[2]
# Accounting for padding:
# the kernel locations are relative to the padded input, inpt[0] is not padded
# this means that the corresponding input of the grad_loc is module.padding shifted to the left
# we account for this:
input_y -= padding[1]
input_x -= padding[2]
input_x = max(0, input_x)
input_y = max(0, input_y)
relevant_input_height = relevant_grad.shape[H_DIM] * stride[1] + (kernel_size[1] - 1)
relevant_input_width = relevant_grad.shape[W_DIM] * stride[2] + (kernel_size[2] - 1)
relevant_input = inpt[:, :,
input_y:input_y + relevant_input_height,
input_x:input_x + relevant_input_width]
# If layer has padding we need to pad based on if the current tile
# is at the sides of the input.
if (padding[0] > 0 or padding[1] > 0 or padding[2] > 0) and \
(sides.top or sides.left or sides.right or sides.bottom):
# The size of the tile should remain equal.
crop_bottom = padding[1] if sides.top else 0
crop_right = padding[2] if sides.left else 0
relevant_input = inpt[:, :,
input_y:input_y + relevant_input_height - crop_bottom,
input_x:input_x + relevant_input_width - crop_right]
relevant_input = torch.nn.functional.pad(relevant_input, [padding[2] if sides.left else 0,
padding[2] if sides.right else 0,
padding[1] if sides.top else 0,
padding[1] if sides.bottom else 0])
# Calculate the kernel gradients with the new unseen gradient values
relevant_grad = relevant_grad.contiguous()
grad_weight = cpp_functions.backward(weight.shape,
relevant_grad.to(weight.dtype),
relevant_input.to(weight.dtype),
(0, 0), # padding
stride[1:3], dilation, groups,
torch.backends.cudnn.benchmark, # benchmark
torch.backends.cudnn.deterministic) # deterministic
if bias is not None:
grad_bias = relevant_grad[0].sum((1, 2))
del relevant_input
del relevant_grad
else:
# if self.verbose and not hasattr(self, '_inefficient_tile_shape_warning'):
# print("Warning: no new gradient values found. Tile size could be too small.")
# self._inefficient_tile_shape_warning = True
grad_weight = torch.zeros_like(weight)
if bias is None: grad_bias = None
else: grad_bias = torch.zeros_like(bias)
if bias is not None:
return grad_in, grad_weight, grad_bias, None, None, None, None, None, None, None, None,
else:
return grad_in, grad_weight, None, None, None, None, None, None, None, None, None,
conv2d = StreamingConv2dF.apply # type:ignore
class StreamingConv2d(_ConvNd):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros'):
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
dilation = _pair(dilation)
super(StreamingConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode)
self.grad_lost = Lost(0, 0, 0, 0)
self.tile_output_box = Box(0, 0, 0, 0, None)
self.reset()
def reset(self):
self.seen_indices = Box(0, 0, 0, 0, None)
self.input_loc = Box(0, 0, 0, 0, None)
def forward(self, input):
return conv2d(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups,
self.grad_lost, self.seen_indices, self.output_stride, self.input_loc)
B_DIM = 0
C_DIM = 1
H_DIM = 2
W_DIM = 3
class StreamingCNN(object):
'''Initialize Streaming CNN helper class. After initialization use the
forward() and backward() function of this class to stream.
Pseudocode example:
```python
sCNN = StreamingCNN(stream_layers, tile_shape=(1, 3, 600, 600))
str_output = sCNN.forward(image)
final_output = final_layers(str_output)
loss = criterion(final_output, labels)
loss.backward()
sCNN.backward(image, str_output.grad)
```
Hooks are used to perform streaming, to use the stream_layers without
streaming you can disable StreamingCNN with the disable() function.
Subsequently, enable() enables it again. Streaming gets enabled by default
after initialization.
'''
def __init__(self, stream_module, tile_shape, verbose=False, deterministic=False,
saliency=False, gather_gradients=False, replace_non_linearity=True,
eps=1e-5, copy_to_gpu=True, dtype=None, statistics_on_cpu=False,
normalize_on_gpu=False, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225],
state_dict=None):
'''
Parameters:
stream_module (torch.nn.Module): module containing the to be streamed layers
tile_shape (tuple, NCHW): size of the to be streamed tiles
verbose (bool): will log various debugging relevant information (default is False)
deterministic (bool): whether to use the deterministic algorithms for cudnn
saliency (bool): will gather the gradients of the input image (saliency map)
gather_gradients (bool): will gather the gradients of the feature maps
eps (float): epsilon error to compare floating values
'''
global H_DIM, W_DIM
self.stream_module = stream_module
self.verbose = verbose
self.deterministic = deterministic
self.eps = eps
self.device = next(stream_module.parameters()).device
self.dtype = next(stream_module.parameters()).dtype
if dtype is not None: self.dtype = dtype
self.tile_shape = tile_shape
self.gather_input_gradient = saliency
self.gather_gradient = gather_gradients
self.replace_non_linearity = replace_non_linearity
self.copy_to_gpu = copy_to_gpu
self.statistics_on_cpu = statistics_on_cpu
self.mean = torch.tensor(mean).cuda()[:, None, None]
self.std = torch.tensor(std).cuda()[:, None, None]
self.should_normalize = normalize_on_gpu
self._tile_output_shape = None
self._module_stats = {}
self._backward_seen_indices = {}
self._saved_tensors = {}
self._current_tile_input_loc = None
self._hooks = []
if state_dict is None:
self._configure()
else:
self.load_state_dict(state_dict)
def _configure(self):
if self.replace_non_linearity: self.convert_modules_model(self.stream_module)
self.convert_modules_model(self.stream_module, from_mod=torch.nn.BatchNorm2d, to_mod=torch.nn.Sequential)
# Save current model and cudnn flags, since we need to change them and restore later
state_dict = self._save_parameters()
old_deterministic_flag, old_benchmark_flag = self._set_cudnn_flags_to_determistic()
self._reset_parameters_to_constant()
# Add hooks to each layer to gather statistics
self._add_hooks_for_statistics()
# We need to temporary store statistics per layer to keep track of the
# total output stride at each layer
self._stats_per_grad_fn = {}
# TODO; temp hack for tile sizes too big on gpu,
# we need float32 precision
if self.statistics_on_cpu:
self.stream_module = self.stream_module.cpu()
self.device = torch.device('cpu') # type:ignore
# Create all-ones tile
tile = torch.ones(self.tile_shape, dtype=self.dtype, requires_grad=True, device=self.device)
self._gather_forward_statistics(tile)
if self.verbose: print('')
self._gather_backward_statistics(tile)
# TODO; temp hack for tile sizes too big on gpu,
if self.statistics_on_cpu:
self.stream_module = self.stream_module.cuda()
self.device = torch.device('cuda') # type:ignore
# Remove all hooks and add hooks for correcting gradients
# during streaming
self._remove_hooks()
self._add_hooks_for_streaming()
self._restore_parameters(state_dict)
self._convert_modules_for_streaming(self.stream_module)
if self.replace_non_linearity: self.convert_modules_model(self.stream_module, back=True)
# Remove temporary data
self._saved_tensors = {}
del self._stats_per_grad_fn
# Zero the gradients
for param in self.stream_module.parameters():
if param.grad is not None: param.grad.data.zero_()
self._set_cudnn_flags(old_deterministic_flag, old_benchmark_flag)
del state_dict
def _gather_backward_statistics(self, tile):
# Forward pass with grads enabled
torch.set_grad_enabled(True)
output = self.stream_module(tile)
# Gather backward statistics
self._tile_output_shape = output.shape
gradient = torch.zeros(*output.shape, dtype=self.dtype, device=self.device)
gradient[:, :,
self.tile_output_lost.top:output.shape[H_DIM] - self.tile_output_lost.bottom,
self.tile_output_lost.left:output.shape[W_DIM] - self.tile_output_lost.right] = 1
output.backward(gradient=gradient)
# Calculate the output stride of the whole stream_module
p_stats = self._prev_stats(output)
if p_stats: self.output_stride = p_stats['output_stride'] * torch.tensor(p_stats['stride'])
else: self.output_stride = torch.tensor([1, 1, 1])
self.tile_gradient_lost = self._non_max_border_amount(tile.grad)
if self.verbose:
print('\n', 'Input gradient lost', self.tile_gradient_lost)
def _gather_forward_statistics(self, tile):
torch.set_grad_enabled(False)
output = self.stream_module(tile)
self.tile_output_lost = self._non_max_border_amount(output)
if self.verbose: print('\n', 'Output lost', self.tile_output_lost)
def convert_modules_model(self, module, from_mod=torch.nn.ReLU6, to_mod=torch.nn.ReLU, back=False):
mod = module
if not back and isinstance(module, from_mod):
mod = to_mod()
# mod.previous_mod = module
if back and isinstance(module, to_mod):
mod = module.previous_mod
for name, child in module.named_children():
mod.add_module(name, self.convert_modules_model(child, from_mod, to_mod))
del module
return mod
def _convert_modules_for_streaming(self, module):
mod = module
if isinstance(module, torch.nn.Conv2d):
if module in self._module_stats:
mod = StreamingConv2d(module.in_channels, module.out_channels, module.kernel_size, module.stride, module.padding, module.dilation, module.groups, module.bias is not None)
mod = mod.to(module.weight.device)
mod = mod.to(module.weight.dtype)
mod.weight.requires_grad = module.weight.requires_grad
if module.bias is not None:
mod.bias.requires_grad = module.bias.requires_grad
mod.load_state_dict(module.state_dict()) # copy params
mod.grad_lost = self._module_stats[module]['grad_lost']
mod.output_stride = self._module_stats[module]['output_stride']
self._module_stats[mod] = self._module_stats[module]
del self._module_stats[module]
for name, child in module.named_children():
mod.add_module(name, self._convert_modules_for_streaming(child))
del module
return mod
def _reset_converted_modules(self, module):
mod = module
if isinstance(module, StreamingConv2d):
mod = torch.nn.Conv2d(module.in_channels, module.out_channels, module.kernel_size, module.stride, module.padding, module.dilation, module.groups, module.bias is not None)
mod = mod.to(module.weight.device)
mod = mod.to(module.weight.dtype)
mod.weight.requires_grad = module.weight.requires_grad
if module.bias is not None:
mod.bias.requires_grad = module.bias.requires_grad
mod.load_state_dict(module.state_dict()) # copy params
self._module_stats[mod] = self._module_stats[module]
del self._module_stats[module]
for name, child in module.named_children():
mod.add_module(name, self._reset_converted_modules(child))
del module
return mod
def _reset_parameters_to_constant(self):
for mod in self.stream_module.modules():
if isinstance(mod, (torch.nn.Conv2d)):
# to counter loating precision errors, we assign 1 to the weights and
# normalize the output after the conv.
torch.nn.init.constant_(mod.weight, 1)
if mod.bias is not None:
torch.nn.init.constant_(mod.bias, 0)
for m in self.stream_module.modules():
if isinstance(m, torch.nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
m.eval()
def _set_cudnn_flags(self, deterministic_flag, benchmark_flag):
torch.backends.cudnn.deterministic = deterministic_flag
torch.backends.cudnn.benchmark = benchmark_flag
def _set_cudnn_flags_to_determistic(self):
deterministic_flag = torch.backends.cudnn.deterministic
benchmark_flag = torch.backends.cudnn.benchmark
self._set_cudnn_flags(True, False)
return deterministic_flag, benchmark_flag
def _save_parameters(self):
state_dict = self.stream_module.state_dict()
state_dict = copy.deepcopy(state_dict)
return state_dict
def _restore_parameters(self, state_dict):
self.stream_module.load_state_dict(state_dict)
def _non_max_border_amount(self, tensor):
# Sum over the channels, useful for networks that treat certain channels
# different (e.g., DenseNet)
if tensor.dim() > 3: tensor = torch.sum(tensor, dim=1)[0]
tensor = tensor / tensor.max() # normalize
tensor = (tensor > tensor.max() * (1-self.eps))
non_zero = tensor.nonzero()
top, left = non_zero.min(dim=0)[0]
# for bottom and right we need to substract -1: correct index 3 is actually the 4th pixel
bottom, right = torch.tensor([*tensor.size()], dtype=torch.long, device=self.device) - non_zero.max(dim=0)[0] - 1
return Lost(int(top), int(left), int(bottom), int(right))
def forward(self, image, result_on_cpu=False):
"""Perform forward pass with streaming.
Parameters:
image (torch.Tensor): CHW the image to stream
"""
# The input image is likely quite small in terms of channels, for
# performance reasons it is beneficial to copy to the GPU as a whole
# instead of tile-by-tile.
image = image
if self.copy_to_gpu:
image = image.to(self.device, non_blocking=True)
tile_width, tile_height = self.tile_shape[W_DIM], self.tile_shape[H_DIM]
# Size of valid output of a tile
valid_output_height = (self._tile_output_shape[H_DIM] - self.tile_output_lost.top - self.tile_output_lost.bottom)
valid_output_width = (self._tile_output_shape[W_DIM] - self.tile_output_lost.left - self.tile_output_lost.right)
# We will keep track which part of the output of the whole image we
# already filled with valid values from tile output.
already_filled = Box(0, 0, 0, 0, None)
# Calculate size of output that we would get by inferencing the
# whole image.
output_height = (image.shape[H_DIM] - self.tile_shape[H_DIM]) // self.output_stride[1] + self._tile_output_shape[H_DIM]
output_width = (image.shape[W_DIM] - self.tile_shape[W_DIM]) // self.output_stride[2] + self._tile_output_shape[W_DIM]
if result_on_cpu:
device = torch.device('cpu')
else:
device = self.device
output = torch.empty((image.shape[0], self._tile_output_shape[1], output_height, output_width), dtype=self.dtype, device=device).fill_(999)
n_rows = math.ceil(float(output_height) / float(valid_output_height))
n_cols = math.ceil(float(output_width) / float(valid_output_width))
if image.shape[W_DIM] <= tile_width: n_cols = 1
if image.shape[H_DIM] <= tile_height: n_rows = 1
if self.gather_input_gradient:
self.saliency_map = torch.zeros(image.shape, dtype=self.dtype, device=self.device)
if self.verbose: print('Number of tiles in forward:', n_rows * n_cols)
if self.verbose: iterator = tqdm(range(n_rows))
else: iterator = range(n_rows)
with torch.no_grad():
for row in iterator:
for col in range(n_cols):
# Coordinates of the output w.r.t. the output of full image
output_y = row * valid_output_height
output_x = col * valid_output_width
# Check if we are at borders, since we can not create
# overlap here and should not crop values.
sides_top = True if row == 0 else False
sides_left = True if col == 0 else False
sides_bottom = True if output_y * self.output_stride[1] + self.tile_shape[H_DIM] >= image.shape[H_DIM] else False
sides_right = True if output_x * self.output_stride[2] + self.tile_shape[W_DIM] >= image.shape[W_DIM] else False
sides = Sides(sides_left, sides_top, sides_right, sides_bottom)
# These values are used to crop invalid output values
lost = self._get_tile_lost_for_sides(sides)
# Since we need to stay at multiples of output stride we
# need to keep that into account when we are at the bottom
# and right side of the output.
if sides_bottom: output_y = (image.shape[H_DIM] - self.tile_shape[H_DIM]) // self.output_stride[1]
if sides_right: output_x = (image.shape[W_DIM] - self.tile_shape[W_DIM]) // self.output_stride[2]
output_y = output_y if not sides.top else 0
output_x = output_x if not sides.left else 0
output_loc = Box(output_y + lost.top, -1, output_x + lost.left, -1, sides)
# Coordinates of the input w.r.t. the output of full image
tile_y = output_y * self.output_stride[1]
tile_x = output_x * self.output_stride[2]
# Extract tile and perform forward pass
tile = image[:, :,
tile_y:tile_y + tile_height,
tile_x:tile_x + tile_width]
# normalize on gpu for speed in dataloader
# does this reduce speed significantly?
if not self.copy_to_gpu:
tile = tile.to(self.device, non_blocking=True)
if self.should_normalize: tile = self._normalize_on_gpu(tile)
tile_output = self.stream_module(tile)
trimmed_output = tile_output[:, :,
lost.top:tile_output.shape[H_DIM] - lost.bottom,
lost.left:tile_output.shape[W_DIM] - lost.right]
new_output_box, updated_total_indices = self._new_value_indices(trimmed_output.shape, output_loc, already_filled)
already_filled = updated_total_indices
relevant_output = trimmed_output[:, :,
new_output_box.y:updated_total_indices.y + new_output_box.height,
new_output_box.x:new_output_box.x + new_output_box.width]
output[:, :, int(updated_total_indices.y):int(updated_total_indices.height), int(updated_total_indices.x - new_output_box.width):int(updated_total_indices.x)] = relevant_output
del tile
assert sides_bottom and sides_right, "It seems like we could not reconstruct all output" #type:ignore
# mem management
del relevant_output # type:ignore
del image
self._saved_tensors = {}
return output
def backward(self, image, grad):
"""Perform backward pass with streaming.
Parameters:
image (torch.Tensor): the image (expects NCHW) that was used in the forward pass
grad (torch.Tensor): this should be the gradient of the output of
the stream_layers.
"""
# The input image is likely quite small in terms of channels, for
# performance reasons it is beneficial to copy to the GPU as a whole
# instead of tile-by-tile.
image = image
if self.copy_to_gpu:
image = image.to(self.device, non_blocking=True)
grad = grad
height = image.shape[H_DIM]
width = image.shape[W_DIM]
tile_height = self.tile_shape[H_DIM]
tile_width = self.tile_shape[W_DIM]
grad_lost = self.tile_gradient_lost
output_height = self._tile_output_shape[H_DIM]
output_width = self._tile_output_shape[W_DIM]
valid_grad_height = (tile_height - grad_lost.top - grad_lost.bottom) // self.output_stride[1]
valid_grad_height *= self.output_stride[1]
valid_grad_width = (tile_width - grad_lost.left - grad_lost.right) // self.output_stride[2]
valid_grad_width *= self.output_stride[2]
n_rows = math.ceil(float(height - grad_lost.top - grad_lost.bottom) / float(valid_grad_height))
n_cols = math.ceil(float(width - grad_lost.left - grad_lost.right) / float(valid_grad_width))
if self.verbose:
ideal_tile_size = height / float(n_rows) + grad_lost.top + grad_lost.bottom
next_ideal_tile_size = height / float(n_rows - 1) + grad_lost.top + grad_lost.bottom
print(ideal_tile_size, n_rows*n_cols, next_ideal_tile_size)
if image.shape[W_DIM] <= tile_width: n_cols = 1
if image.shape[H_DIM] <= tile_height: n_rows = 1
if self.gather_gradient:
self.gradients = {}
self._inputs = {}
self._backward_seen_indices = {}
if self.verbose: print('Number of tiles in backprop:', n_rows * n_cols)
if self.verbose: iterator = tqdm(range(n_rows))
else: iterator = range(n_rows)
for row in iterator:
for col in range(n_cols):
# Since we determine output (gradient) coordinates based on input
# coordinates. We need to divide by output stride.
output_y = row * valid_grad_height // self.output_stride[1]
output_x = col * valid_grad_width // self.output_stride[2]
sides_top = True if row == 0 else False
sides_left = True if col == 0 else False
sides_bottom = True if output_y + output_height >= grad.shape[H_DIM] else False
sides_right = True if output_x + output_width >= grad.shape[W_DIM] else False
sides = Sides(sides_left, sides_top, sides_right, sides_bottom)
# We are doing a forward pass
lost = self._get_tile_lost_for_sides(sides)
# If the tile is at the bottom or right side of the input image
# than we need to shift back so that the tile fits (does not go
# over the border)
if sides_bottom: output_y = max(grad.shape[H_DIM] - output_height, 0)
if sides_right: output_x = max(grad.shape[W_DIM] - output_width, 0)
input_y = output_y * self.output_stride[1]
input_x = output_x * self.output_stride[2]
input_loc = Box(input_y, tile_height, input_x, tile_width, sides)
tile = image[:, :,
input_y:input_y + tile_height,
input_x:input_x + tile_width]
gradient = grad[:, :,
output_y:output_y + output_height,
output_x:output_x + output_width]
self._saved_tensors = {}
# Trim output and gradient
trimmed_grad = gradient[:, :,
lost.top:gradient.shape[H_DIM] - lost.bottom,
lost.left:gradient.shape[W_DIM] - lost.right]
if not self.copy_to_gpu:
tile = tile.to(self.device, non_blocking=True)
for mod in self.stream_module.modules():
if isinstance(mod, StreamingConv2d):
mod.input_loc = input_loc
# normalize on gpu for speed in dataloader
# does this reduce speed significantly?
if self.should_normalize: tile = self._normalize_on_gpu(tile)
if self.dtype == torch.float16:
with autocast():
tile_output = self.stream_module(tile)
else:
tile_output = self.stream_module(tile)
del tile # memory management
trimmed_output = tile_output[:, :,
lost.top:tile_output.shape[H_DIM] - lost.bottom,
lost.left:tile_output.shape[W_DIM] - lost.right]
# Do backward pass, fix gradient in hooks
trimmed_output = trimmed_output.to(self.device, non_blocking=True)
# Sometimes when training with variable input shapes,
# the gradient size is a bit too big
if trimmed_grad.shape[H_DIM] != trimmed_output.shape[H_DIM] or \
trimmed_grad.shape[W_DIM] != trimmed_output.shape[W_DIM]:
assert image.shape[H_DIM] < self.tile_shape[H_DIM] or \
image.shape[W_DIM] < self.tile_shape[W_DIM]
trimmed_grad = trimmed_grad[:, :,
0:trimmed_output.shape[H_DIM],
0:trimmed_output.shape[W_DIM]]
trimmed_output.backward(trimmed_grad)
# Memory management
del tile_output
del trimmed_grad
del trimmed_output
# Memory management
self._saved_tensors = {}
self._current_tile_input_loc = None
for mod in self.stream_module.modules():
if isinstance(mod, StreamingConv2d):
mod.input_loc = None
mod.reset()
assert sides_right and sides_bottom, "It seems like we could not reconstruct all output" # type:ignore
def _get_tile_lost_for_sides(self, sides):
lost_top = self.tile_output_lost.top if not sides.top else 0
lost_bottom = self.tile_output_lost.bottom if not sides.bottom else 0
lost_left = self.tile_output_lost.left if not sides.left else 0
lost_right = self.tile_output_lost.right if not sides.right else 0
lost = Lost(lost_top, lost_left, lost_bottom, lost_right)
return lost
def _normalize_on_gpu(self, tile):
tile_norm = tile.to(self.dtype)
del tile
tile_norm.div_(255)
tile_norm.sub_(self.mean)
tile_norm.div_(self.std)
tile = tile_norm
return tile
def disable(self):
"""Disable the streaming hooks"""
self._remove_hooks()
self._reset_converted_modules(self.stream_module)
def enable(self):
"""Enable the streaming hooks"""
self._remove_hooks()
self._add_hooks_for_streaming()
self._convert_modules_for_streaming(self.stream_module)
def _add_hooks_for_statistics(self):
def forw_lambda(module, inpt, outpt):
self._forward_gather_statistics_hook(module, inpt, outpt)
def back_lambda(module, grad_in, grad_out):
return self._backward_gather_statistics_hook(module, grad_in, grad_out)
self._add_hooks(forward_hook=forw_lambda, backward_hook=back_lambda)
def _add_hooks_for_streaming(self):
if self.gather_input_gradient:
def back_lambda(module, grad_in, grad_out):
return self._backward_saliency_hook(module, grad_in, grad_out)
for mod in self.stream_module.modules():
if isinstance(mod, (torch.nn.Conv2d)):
if mod.in_channels == 3:
back_handle = mod.register_backward_hook(back_lambda)
self._hooks.append(back_handle)
def _add_hooks(self, forward_hook, backward_hook,
forward_modules=(torch.nn.Conv2d, torch.nn.MaxPool2d, torch.nn.AvgPool2d),
back_modules=(torch.nn.Conv2d, torch.nn.MaxPool2d)):
for mod in self.stream_module.modules():
if isinstance(mod, forward_modules):
forw_handle = mod.register_forward_hook(forward_hook)
self._hooks.append(forw_handle)
if back_modules and isinstance(mod, back_modules):
back_handle = mod.register_backward_hook(backward_hook)
self._hooks.append(back_handle)
def _remove_hooks(self):
for hook in self._hooks:
hook.remove()
def _forward_gather_statistics_hook(self, module, inpt, output):
stride, kernel_size, _ = _triple(module.stride), _triple(module.kernel_size), _triple(module.padding)
if not torch.is_grad_enabled(): # type:ignore
# Convert strided convolutions/pooling to average pool
if isinstance(module, (torch.nn.MaxPool2d)) or \
(stride[0] > 1 and stride[0] > kernel_size[0]) or \
(stride[1] > 1 and stride[1] > kernel_size[1]) or \
(stride[2] > 1 and stride[2] > kernel_size[2]):
# Pytorch documentation is explicitely against changing output in a forward hook
# However, since we do not really need the graph or gradients to be correct
# it shouldn't harm.
if module.padding != 0:
padding = module.padding
if not isinstance(module.padding, tuple):
padding = [module.padding, module.padding]
padded_input = torch.nn.functional.pad(inpt[0], [padding[1], padding[1], padding[0], padding[0]])
else:
padded_input = inpt[0]
new_output = torch.nn.functional.avg_pool2d(padded_input, kernel_size[1:], stride[1:])
new_output = torch.sum(new_output, dim=1)[0]
new_output = (new_output > (1-self.eps) * new_output.max())
new_output = new_output.expand_as(output[0])
output[0] = new_output.type(self.dtype)
# Sum all dimensions (useful for DenseNet like networks)
lost = self._non_max_border_amount(output)
# Make output between 0-1 again, so the values do not explode
output.fill_(0)
output[:,:,lost.top:output[0, 0].shape[0] - lost.bottom,
lost.left:output[0, 0].shape[1] - lost.right] = 1
module_stats = {'lost': lost, 'stride': stride, 'module': module}
if self.verbose: print(module, "\n", module_stats['lost'])
self._saved_tensors[module] = inpt
self._module_stats[module] = module_stats
else:
module_stats = self._module_stats[module]
p_stats = self._prev_stats(output)
if p_stats: output_stride = p_stats['output_stride'] * torch.tensor(p_stats['stride'])
else: output_stride = torch.tensor([1, 1, 1])
module_stats['output_stride'] = output_stride.clone().detach()
self._stats_per_grad_fn[output.grad_fn] = module_stats
self._module_stats[module] = module_stats
def _backward_gather_statistics_hook(self, module, grad_in, grad_out):
stride, kernel_size, _ = _triple(module.stride), _triple(module.kernel_size), _triple(module.padding)
if grad_in[0] is not None:
# We sum over the channels to deal with networks that do different operations
# on groups of channels
f_grad = torch.sum(grad_in[0], dim=1)[0]
if isinstance(module, (torch.nn.MaxPool2d)):
# MaxPool shifts indices around, which break the calculation to
# find valid gradient values. To fix this we do an average pool
# with the same kernel-size and stride and repeat using the stride.
inpt = self._saved_tensors[module]
padded_inpt = inpt[0]
if module.padding != 0:
padded_inpt = torch.nn.functional.pad(inpt[0], [module.padding, module.padding,
module.padding, module.padding], value=-1)
new_outpt = torch.nn.functional.avg_pool2d(padded_inpt, kernel_size[1:], stride[1:])[0]
new_outpt = torch.sum(new_outpt, dim=0)
f_grad = torch.sum(grad_out[0], dim=1)[0]
f_grad = f_grad * new_outpt
f_grad = f_grad.cpu()
f_grad = np.repeat(f_grad, stride[1], axis=0)
f_grad = np.repeat(f_grad, stride[2], axis=1)
grad = np.zeros(grad_in[0].shape[2:])
grad[:f_grad.shape[0], :f_grad.shape[1]] = f_grad
f_grad = torch.from_numpy(grad)
f_grad = f_grad.to(self.device)
grad_lost = self._non_max_border_amount(grad_out[0])
if self.verbose: print(module, "\n", grad_lost)
self._module_stats[module]['grad_lost'] = grad_lost
valid_grad = (f_grad > (1-self.eps) * f_grad.max())
# When kernel_size > stride we have some _overlap_ of gradients,
# this overlap makes extra positions in the input gradient invalid
if (stride[0] > 1 and kernel_size[0] > stride[0]) or \
(stride[1] > 1 and kernel_size[1] > stride[1]) or \
(stride[2] > 1 and kernel_size[2] > stride[2]):
valid_lost = self._non_max_border_amount(f_grad)
valid_grad.fill_(0)
overlap_rows = kernel_size[1] - stride[1]
overlap_cols = kernel_size[2] - stride[2]
valid_grad[valid_lost.top + overlap_rows:
valid_grad.shape[0] - valid_lost.bottom - overlap_rows,
valid_lost.left + overlap_cols:
valid_grad.shape[1] - valid_lost.right - overlap_cols] = 1
new_grad_in = valid_grad[None].expand(grad_in[0].shape[1], *valid_grad.shape)[None]
new_grad_in = (new_grad_in.type(self.dtype) * 10 - 1)
new_grad_in_lost = self._non_max_border_amount(new_grad_in)
return (new_grad_in, *grad_in[1:])
def _backward_saliency_hook(self, module: StreamingConv2d, grad_in, grad_out, is_bias=False, change_grad=True):
stride: List[int] = _triple(module.stride) # type:ignore
# Trim gradient of invalid values
sides = module.input_loc.sides
grad_lost = module.grad_lost # type: Lost
lost_top = grad_lost.top if not sides.top else 0
lost_bottom = grad_lost.bottom if not sides.bottom else 0
lost_left = grad_lost.left if not sides.left else 0
lost_right = grad_lost.right if not sides.right else 0
lost = Lost(lost_top, lost_left, lost_bottom, lost_right)
# Calculate which part of the gradient is 'new'
new_output_box = module.tile_output_box
updated_total_indices = module.seen_indices
if module.in_channels == 3:
valid_grad_in = grad_in[0][:, :,
lost.top*stride[0]:grad_in[0].shape[2] - lost.bottom*stride[0],
lost.left*stride[1]:grad_in[0].shape[3] - lost.right*stride[1]]
relevant_input_grad = valid_grad_in[:, :,
new_output_box.y*stride[0]:
new_output_box.y*stride[0] + new_output_box.height*stride[0],
new_output_box.x*stride[1]:
new_output_box.x*stride[1] + new_output_box.width*stride[1]]
self.saliency_map[:, :,
updated_total_indices.y * stride[0]:
updated_total_indices.height * stride[0],
updated_total_indices.x * stride[1] - relevant_input_grad.shape[3]:
updated_total_indices.x * stride[1]] = relevant_input_grad.detach().cpu()
del relevant_input_grad
del valid_grad_in
@staticmethod
def _new_value_indices(data_shape, data_indices, old_value_indices):
"""
This helper functions assumes we reconstruct feature maps and
gradients in tiles from top-left to bottom-right. Using current tile
index and old_value_indices it finds the relative indices of `data`
which are unique for this tile (not earlier seen in other tiles).
"""
rel_top, rel_bottom, rel_left, rel_right = 0, 0, 0, 0
old_values_y = old_value_indices.y
old_values_x = old_value_indices.x
old_values_height = old_value_indices.height