forked from ethanhe42/channel-pruning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
184 lines (162 loc) · 6.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from __future__ import print_function
from easydict import EasyDict as edict
from lib.cfgs import c as dcfgs
import lib.cfgs as cfgs
import os
os.environ['JOBLIB_TEMP_FOLDER']=dcfgs.shm
import argparse
os.environ['GLOG_minloglevel'] = '3'
import os.path as osp
import pickle
import sys
from multiprocessing import Process, Queue
import matplotlib.pyplot as plt
import numpy as np
from IPython import embed
from lib.decompose import *
from lib.net import Net, load_layer, caffe_test
from lib.utils import *
from lib.worker import Worker
import google.protobuf.text_format # added to fix missing protobuf properties -by Mario
sys.path.insert(0, osp.dirname(__file__)+'/lib')
def step0(pt, model):
net = Net(pt, model=model, noTF=1) # lib/net.Net instantiate the NetBuilder -by Mario
WPQ, pt, model = net.preprocess_resnet() # WPQ stores pruned values, which will be later saved to the caffemodel -by Mario
return {"WPQ": WPQ, "pt": pt, "model": model}
def step1(pt, model, WPQ, check_exist=False):
print(pt)
net = Net(pt, model, noTF=1)
model = net.finalmodel(WPQ) # loads weights into the caffemodel - by Mario
if 1:#TODO: Consider adding a configuration paramter to cfgs.py in order to control whether or not to prune the last conv layer -by Mario
convs = net.convs
redprint("including last conv layer!")
else:
convs = net.convs[:-1]
redprint("ignoring last conv layer!")
if dcfgs.dic.option == 1:
if DEBUG: redprint("This line executed because dcfgs.dic.option is set to 1 [train.step1()]")
sums = net.type2names('Eltwise')[:-1]
newsums = []
for i in sums:
if not i.endswith('block8_sum'):
newsums.append(i)
newconvs = []
for i in convs:
if i.endswith('_proj'):
newconvs.insert(0,i)
else:
newconvs.append(i)
convs = newsums + newconvs
else:
convs += net.type2names('Eltwise')[:-1] # I guess Element-wise operations are included in ResNet or Xception -by Mario
if dcfgs.dic.fitfc:
convs += net.type2names('InnerProduct')
if dcfgs.model in [cfgs.Models.xception,cfgs.Models.resnet]:
for i in net.bns:
if 'branch1' in i:
convs += [i]
net.freeze_images(check_exist=check_exist, convs=convs)
return {"model":model}
def combine():
net = Net(dcfgs.prototxt, dcfgs.weights)
net.combineHP()
def c3(pt=cfgs.vgg.model,model=cfgs.vgg.weights): # TODO: Consider changing cfgs.vgg.model and cfgs.vgg.weights (paths to the .prototxt and .caffemodel files) for a generic model reference -by Mario
dcfgs.splitconvrelu=True
cfgs.accname='accuracy@5' # name of layer in the prototxt -by Mario
def solve(pt, model):
net = Net(pt, model=model)
net.load_frozen() # this method can load images from memory if we pass a feats_dic. For what? -by Mario
WPQ, new_pt = net.R3()
return {"WPQ": WPQ, "new_pt": new_pt}
def stepend(new_pt, model, WPQ):
net = Net(new_pt, model=model)
net.WPQ = WPQ
net.finalmodel(save=False) # load weights into the caffemodel -by Mario
net.dis_memory()
#final = net.finalmodel(WPQ, prefix='3r')
new_pt, new_model = net.save(prefix='3c')
print('caffe test -model',new_pt, '-weights',new_model)
return {"final": None}
worker = Worker()
outputs = worker.do(step0, pt=pt, model=model)
printstage("freeze")
pt = outputs['pt']
outputs = worker.do(step1,**outputs)
printstage("speed", dcfgs.dic.keep)
outputs['pt'] = mem_pt(pt)
if 0:
outputs = solve(**outputs)
else:
outputs = worker.do(solve, **outputs)
printstage("saving")
outputs = worker.do(stepend, model=model, **outputs)
def splitrelu():
net = Net(dcfgs.prototxt, model=dcfgs.weights)
print(net.seperateConvReLU())
def addbn(pt='../resnet-cifar10-caffe/resnet-56/prb_mem_bn_trainval.prototxt', model="../resnet-cifar10-caffe/resnet-56/snapshot/prb_VH_bn__iter_64000.caffemodel"):
""" Restore BatchNorm for finetuning
"""
worker=Worker()
def ad(pt, model):
net = Net(pt, model=model, noTF=1)
#net.computation()
pt, WPQ = net.add_bn()
return {'new_pt': pt, 'model':model, 'WPQ':WPQ}
outs = worker.do(ad, pt=pt, model=model)
worker.do(stepend, **outs)
#stepend(**outs)
def compute(pt='../resnet-cifar10-caffe/resnet-56/trainval.prototxt', model="../resnet-cifar10-caffe/resnet-56/snapshot/_iter_64000.caffemodel"):
net = Net(pt, model=model, noTF=1)
net.computation()
def parse_args():
parser = argparse.ArgumentParser("experiment")
parser.add_argument('-tf', dest='tf_vis', help='tf devices', default=None, type=str)
parser.add_argument('-caffe', dest='caffe_vis', help='caffe devices', default=None, type=str)
parser.add_argument('-action', dest='action', help='action', default='train', type=str)
attrs = ['dic', 'an', 'res']
for d in attrs:
for i in dcfgs[d]:
parser.add_argument('-'+d+'.'+i, dest=d+'DOT'+i, help=d+'.'+i, default=None,type=str)
for i in dcfgs:
if i not in attrs:
parser.add_argument('-'+i, dest=i, help=i, default=None,type=str)
args = parser.parse_args()
if args.tf_vis is not None: cfgs.tf_vis = args.tf_vis
if args.caffe_vis is not None: cfgs.caffe_vis = args.caffe_vis
for d in attrs:
for i in dcfgs[d]:
att = getattr(args, d+'DOT'+i)
if att is not None:
if 0:
print(d,i, att)
dcfgs[d][i]=type(dcfgs[d][i])(att)
for i in dcfgs:
if i in attrs:
continue
att = getattr(args, i)
if att is not None:
dcfgs[i]=type(dcfgs[i])(att)
dcfgs.Action = args.action
if args.model is not None:
netmodel = getattr(cfgs, args.model)
cfgs.accname = netmodel.accname
if args.prototxt is None:
dcfgs.prototxt = netmodel.model
if args.weights is None:
dcfgs.weights = netmodel.weights
return args
if __name__ == '__main__':
args = parse_args()
cfgs.set_nBatches(dcfgs.nBatches)
dcfgs.dic.option=1
DEBUG = 0
if args.action == cfgs.Action.addbn:
addbn(pt=dcfgs.prototxt, model=dcfgs.weights)
elif args.action == cfgs.Action.splitrelu:
splitrelu()
elif args.action == cfgs.Action.c3:
c3()
elif args.action == cfgs.Action.combine:
combine()
else:
pass