-
Notifications
You must be signed in to change notification settings - Fork 0
/
inertial_mhd2d_nonlinear_newton_split_lu.py
782 lines (573 loc) · 30.3 KB
/
inertial_mhd2d_nonlinear_newton_split_lu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
'''
Created on Mar 23, 2012
@author: Michael Kraus ([email protected])
'''
import sys, petsc4py
petsc4py.init(sys.argv)
from petsc4py import PETSc
import argparse
import time
import numpy as np
import h5py
from config import Config
from imhd.integrators.Inertial_MHD_Nonlinear import PETScFunction
from imhd.integrators.Inertial_MHD_Euler import PETScSolverEuler
from imhd.integrators.Inertial_MHD_Faraday import PETScSolverFaraday
from imhd.integrators.Inertial_MHD_Poisson import PETScSolverPoisson
from imhd.integrators.MHD_Derivatives import MHD_Derivatives
class petscMHD2D(object):
'''
PETSc/Python Vlasov Poisson Solver in 1D.
'''
def __init__(self, cfgfile):
'''
Constructor
'''
# stencil = 1
stencil = 2
# load run config file
cfg = Config(cfgfile)
self.cfg = cfg
cfg.set_petsc_options()
# timestep setup
self.ht = cfg['grid']['ht'] # timestep size
self.nt = cfg['grid']['nt'] # number of timesteps
self.nsave = cfg['io']['nsave'] # save only every nsave'th timestep
# grid setup
nx = cfg['grid']['nx'] # number of points in x
ny = cfg['grid']['ny'] # number of points in y
Lx = cfg['grid']['Lx'] # spatial domain in x
x1 = cfg['grid']['x1'] #
x2 = cfg['grid']['x2'] #
Ly = cfg['grid']['Ly'] # spatial domain in y
y1 = cfg['grid']['y1'] #
y2 = cfg['grid']['y2'] #
self.nx = nx
self.ny = ny
if x1 != x2:
Lx = x2-x1
else:
x1 = 0.0
x2 = Lx
if y1 != y2:
Ly = y2-y1
else:
y1 = 0.0
y2 = Ly
self.hx = Lx / nx # gridstep size in x
self.hy = Ly / ny # gridstep size in y
# friction, viscosity and resistivity
mu = cfg['initial_data']['mu'] # friction
nu = cfg['initial_data']['nu'] # viscosity
eta = cfg['initial_data']['eta'] # resistivity
de = cfg['initial_data']['de'] # electron skin depth
# solver parameters
self.atol = cfg['solver']['petsc_snes_atol']
self.rtol = cfg['solver']['petsc_snes_rtol']
self.stol = cfg['solver']['petsc_snes_stol']
self.max_it = cfg['solver']['petsc_snes_max_iter']
if PETSc.COMM_WORLD.getRank() == 0:
print()
print("nt = %i" % (self.nt))
print("nx = %i" % (self.nx))
print("ny = %i" % (self.ny))
print()
print("ht = %e" % (self.ht))
print("hx = %e" % (self.hx))
print("hy = %e" % (self.hy))
print()
print("Lx = %e" % (Lx))
print("Ly = %e" % (Ly))
print()
print("mu = %e" % (mu))
print("nu = %e" % (nu))
print("eta = %e" % (eta))
print()
self.time = PETSc.Vec().createMPI(1, PETSc.DECIDE, comm=PETSc.COMM_WORLD)
self.time.setName('t')
if PETSc.COMM_WORLD.getRank() == 0:
self.time.setValue(0, 0.0)
# create derivatives object
self.derivatives = MHD_Derivatives(nx, ny, self.ht, self.hx, self.hy)
# create DA with single dof
self.da1 = PETSc.DA().create(dim=2, dof=1,
sizes=[nx, ny],
proc_sizes=[PETSc.DECIDE, PETSc.DECIDE],
boundary_type=('periodic', 'periodic'),
stencil_width=stencil,
stencil_type='box')
# create DA (dof = 2 for Bx, By or Bix, Biy)
self.da2 = PETSc.DA().create(dim=2, dof=2,
sizes=[nx, ny],
proc_sizes=[PETSc.DECIDE, PETSc.DECIDE],
boundary_type=('periodic', 'periodic'),
stencil_width=stencil,
stencil_type='box')
# create DA (dof = 3 for Vx, Vy, P)
self.da3 = PETSc.DA().create(dim=2, dof=3,
sizes=[nx, ny],
proc_sizes=[PETSc.DECIDE, PETSc.DECIDE],
boundary_type=('periodic', 'periodic'),
stencil_width=stencil,
stencil_type='box')
# create DA (dof = 7 for Vx, Vy, Bx, By, Bix, Biy, P)
self.da7 = PETSc.DA().create(dim=2, dof=7,
sizes=[nx, ny],
proc_sizes=[PETSc.DECIDE, PETSc.DECIDE],
boundary_type=('periodic', 'periodic'),
stencil_width=stencil,
stencil_type='box')
# create DA for x grid
self.dax = PETSc.DA().create(dim=1, dof=1,
sizes=[nx],
proc_sizes=[PETSc.DECIDE],
boundary_type=('periodic'))
# create DA for y grid
self.day = PETSc.DA().create(dim=1, dof=1,
sizes=[ny],
proc_sizes=[PETSc.DECIDE],
boundary_type=('periodic'))
# initialise grid
self.da1.setUniformCoordinates(xmin=x1, xmax=x2,
ymin=y1, ymax=y2)
self.da2.setUniformCoordinates(xmin=x1, xmax=x2,
ymin=y1, ymax=y2)
self.da3.setUniformCoordinates(xmin=x1, xmax=x2,
ymin=y1, ymax=y2)
self.da7.setUniformCoordinates(xmin=x1, xmax=x2,
ymin=y1, ymax=y2)
self.dax.setUniformCoordinates(xmin=x1, xmax=x2)
self.day.setUniformCoordinates(xmin=y1, xmax=y2)
# create solution and RHS vectors
self.f = self.da7.createGlobalVec()
self.x = self.da7.createGlobalVec()
self.b = self.da7.createGlobalVec()
# create vectors for magnetic and velocity field
self.V = self.da3.createGlobalVec()
self.B = self.da2.createGlobalVec()
self.Bi = self.da2.createGlobalVec()
# create RHS vectors for magnetic and velocity field
self.FE = self.da3.createGlobalVec()
self.FF = self.da2.createGlobalVec()
self.FP = self.da2.createGlobalVec()
# create vectors for magnetic and velocity field
self.Bix = self.da1.createGlobalVec()
self.Biy = self.da1.createGlobalVec()
self.Bx = self.da1.createGlobalVec()
self.By = self.da1.createGlobalVec()
self.Vx = self.da1.createGlobalVec()
self.Vy = self.da1.createGlobalVec()
self.P = self.da1.createGlobalVec()
self.xcoords = self.da1.createGlobalVec()
self.ycoords = self.da1.createGlobalVec()
# create local vectors for initialisation of pressure
self.localBix = self.da1.createLocalVec()
self.localBiy = self.da1.createLocalVec()
self.localBx = self.da1.createLocalVec()
self.localBy = self.da1.createLocalVec()
self.localVx = self.da1.createLocalVec()
self.localVy = self.da1.createLocalVec()
# set variable names
self.Bix.setName('Bix')
self.Biy.setName('Biy')
self.Bx.setName('Bx')
self.By.setName('By')
self.Vx.setName('Vx')
self.Vy.setName('Vy')
self.P.setName('P')
# create Matrix object
self.petsc_function = PETScFunction (self.da1, self.da7, nx, ny, self.ht, self.hx, self.hy, mu, nu, eta, de)
self.petsc_euler = PETScSolverEuler (self.da3, self.da7, nx, ny, self.ht, self.hx, self.hy, mu, nu, eta, de)
self.petsc_faraday = PETScSolverFaraday(self.da2, self.da7, nx, ny, self.ht, self.hx, self.hy, mu, nu, eta, de)
self.petsc_poisson = PETScSolverPoisson(self.da2, self.da7, nx, ny, self.ht, self.hx, self.hy, mu, nu, eta, de)
# create jacobians (JE: Euler, JF: Faraday, JP: Poisson)
self.JE = self.da3.createMat()
self.JE.setOption(self.JE.Option.NEW_NONZERO_ALLOCATION_ERR, False)
self.JE.setUp()
self.JF = self.da2.createMat()
self.JF.setOption(self.JF.Option.NEW_NONZERO_ALLOCATION_ERR, False)
self.JF.setUp()
self.JP = self.da2.createMat()
self.JP.setOption(self.JP.Option.NEW_NONZERO_ALLOCATION_ERR, False)
self.JP.setUp()
# create nonlinear solver for Euler equation
self.snes_euler = PETSc.SNES().create()
self.snes_euler.setType('ksponly')
self.snes_euler.setFunction(self.petsc_euler.snes_mult, self.FE)
self.snes_euler.setJacobian(self.updateJacobianEuler, self.JE)
self.snes_euler.setFromOptions()
self.snes_euler.getKSP().setType('preonly')
self.snes_euler.getKSP().getPC().setType('lu')
# create nonlinear solver for Faraday equation
self.snes_faraday = PETSc.SNES().create()
self.snes_faraday.setType('ksponly')
self.snes_faraday.setFunction(self.petsc_faraday.snes_mult, self.FF)
self.snes_faraday.setJacobian(self.updateJacobianFaraday, self.JF)
self.snes_faraday.setFromOptions()
self.snes_faraday.getKSP().setType('preonly')
self.snes_faraday.getKSP().getPC().setType('lu')
# create linear solver for Poisson equation
self.snes_poisson = PETSc.SNES().create()
self.snes_poisson.setType('ksponly')
self.snes_poisson.setFunction(self.petsc_poisson.snes_mult, self.FP)
self.snes_poisson.setJacobian(self.updateJacobianPoisson, self.JP)
self.snes_poisson.setFromOptions()
self.snes_poisson.getKSP().setType('preonly')
self.snes_poisson.getKSP().getPC().setType('lu')
# set initial data
(xs, xe), (ys, ye) = self.da1.getRanges()
xc_arr = self.da1.getVecArray(self.xcoords)
yc_arr = self.da1.getVecArray(self.ycoords)
for i in range(xs, xe):
for j in range(ys, ye):
xc_arr[i,j] = x1 + i*self.hx
yc_arr[i,j] = y1 + j*self.hy
if cfg['io']['hdf5_input'] != None:
hdf5_filename = self.cfg["io"]["hdf5_input"]
if PETSc.COMM_WORLD.getRank() == 0:
print(" Input: %s" % hdf5_filename)
hdf5in = h5py.File(hdf5_filename, "r", driver="mpio", comm=PETSc.COMM_WORLD.tompi4py())
# assert self.nx == hdf5in.attrs["grid.nx"]
# assert self.ny == hdf5in.attrs["grid.ny"]
# assert self.hx == hdf5in.attrs["grid.hx"]
# assert self.hy == hdf5in.attrs["grid.hy"]
# assert self.Lx == hdf5in.attrs["grid.Lx"]
# assert self.Ly == hdf5in.attrs["grid.Ly"]
#
# assert self.de == hdf5in.attrs["initial_data.skin_depth"]
timestep = len(hdf5in["t"][...].flatten()) - 1
hdf5in.close()
hdf5_viewer = PETSc.ViewerHDF5().create(cfg['io']['hdf5_input'],
mode=PETSc.Viewer.Mode.READ,
comm=PETSc.COMM_WORLD)
hdf5_viewer.setTimestep(timestep)
self.Bix.load(hdf5_viewer)
self.Biy.load(hdf5_viewer)
self.Bx.load(hdf5_viewer)
self.By.load(hdf5_viewer)
self.Vx.load(hdf5_viewer)
self.Vy.load(hdf5_viewer)
self.P.load(hdf5_viewer)
hdf5_viewer.destroy()
# copy modified magnetic induction to solution vector
Bx_arr = self.da1.getVecArray(self.Bx)
By_arr = self.da1.getVecArray(self.By)
Vx_arr = self.da1.getVecArray(self.Vx)
Vy_arr = self.da1.getVecArray(self.Vy)
Bix_arr = self.da1.getVecArray(self.Bix)
Biy_arr = self.da1.getVecArray(self.Biy)
P_arr = self.da1.getVecArray(self.P)
x_arr = self.da7.getVecArray(self.x)
x_arr[xs:xe, ys:ye, 0] = Vx_arr [xs:xe, ys:ye]
x_arr[xs:xe, ys:ye, 1] = Vy_arr [xs:xe, ys:ye]
x_arr[xs:xe, ys:ye, 2] = Bx_arr [xs:xe, ys:ye]
x_arr[xs:xe, ys:ye, 3] = By_arr [xs:xe, ys:ye]
x_arr[xs:xe, ys:ye, 4] = Bix_arr[xs:xe, ys:ye]
x_arr[xs:xe, ys:ye, 5] = Biy_arr[xs:xe, ys:ye]
x_arr[xs:xe, ys:ye, 6] = P_arr [xs:xe, ys:ye]
v_arr = self.da3.getVecArray(self.V)
v_arr[xs:xe, ys:ye, 0] = Vx_arr[xs:xe, ys:ye]
v_arr[xs:xe, ys:ye, 1] = Vy_arr[xs:xe, ys:ye]
v_arr[xs:xe, ys:ye, 2] = P_arr [xs:xe, ys:ye]
b_arr = self.da2.getVecArray(self.B)
b_arr[xs:xe, ys:ye, 0] = Bx_arr[xs:xe, ys:ye]
b_arr[xs:xe, ys:ye, 1] = By_arr[xs:xe, ys:ye]
b_arr = self.da2.getVecArray(self.Bi)
b_arr[xs:xe, ys:ye, 0] = Bix_arr[xs:xe, ys:ye]
b_arr[xs:xe, ys:ye, 1] = Biy_arr[xs:xe, ys:ye]
else:
Bx_arr = self.da1.getVecArray(self.Bx)
By_arr = self.da1.getVecArray(self.By)
Vx_arr = self.da1.getVecArray(self.Vx)
Vy_arr = self.da1.getVecArray(self.Vy)
xc_arr = self.da1.getVecArray(self.xcoords)
yc_arr = self.da1.getVecArray(self.ycoords)
if cfg['initial_data']['magnetic_python'] != None:
init_data = __import__("examples." + cfg['initial_data']['magnetic_python'], globals(), locals(), ['magnetic_x', 'magnetic_y'], 0)
for i in range(xs, xe):
for j in range(ys, ye):
Bx_arr[i,j] = init_data.magnetic_x(xc_arr[i,j], yc_arr[i,j] + 0.5 * self.hy, self.hx, self.hy)
By_arr[i,j] = init_data.magnetic_y(xc_arr[i,j] + 0.5 * self.hx, yc_arr[i,j], self.hx, self.hy)
else:
Bx_arr[xs:xe, ys:ye] = cfg['initial_data']['magnetic']
By_arr[xs:xe, ys:ye] = cfg['initial_data']['magnetic']
if cfg['initial_data']['velocity_python'] != None:
init_data = __import__("examples." + cfg['initial_data']['velocity_python'], globals(), locals(), ['velocity_x', 'velocity_y'], 0)
for i in range(xs, xe):
for j in range(ys, ye):
Vx_arr[i,j] = init_data.velocity_x(xc_arr[i,j], yc_arr[i,j] + 0.5 * self.hy, self.hx, self.hy)
Vy_arr[i,j] = init_data.velocity_y(xc_arr[i,j] + 0.5 * self.hx, yc_arr[i,j], self.hx, self.hy)
else:
Vx_arr[xs:xe, ys:ye] = cfg['initial_data']['velocity']
Vy_arr[xs:xe, ys:ye] = cfg['initial_data']['velocity']
if cfg['initial_data']['pressure_python'] != None:
init_data = __import__("examples." + cfg['initial_data']['pressure_python'], globals(), locals(), ['pressure', ''], 0)
# Fourier Filtering
from scipy.fftpack import rfft, irfft
nfourier_x = cfg['initial_data']['nfourier_Bx']
nfourier_y = cfg['initial_data']['nfourier_By']
if nfourier_x >= 0 or nfourier_y >= 0:
print("Fourier Filtering B")
# obtain whole Bx vector everywhere
scatter, Xglobal = PETSc.Scatter.toAll(self.Bx)
scatter.begin(self.Bx, Xglobal, PETSc.InsertMode.INSERT, PETSc.ScatterMode.FORWARD)
scatter.end (self.Bx, Xglobal, PETSc.InsertMode.INSERT, PETSc.ScatterMode.FORWARD)
petsc_indices = self.da1.getAO().app2petsc(np.arange(self.nx*self.ny, dtype=np.int32))
BxTmp = Xglobal.getValues(petsc_indices).copy().reshape((self.ny, self.nx)).T
scatter.destroy()
Xglobal.destroy()
# obtain whole By vector everywhere
scatter, Xglobal = PETSc.Scatter.toAll(self.By)
scatter.begin(self.By, Xglobal, PETSc.InsertMode.INSERT, PETSc.ScatterMode.FORWARD)
scatter.end (self.By, Xglobal, PETSc.InsertMode.INSERT, PETSc.ScatterMode.FORWARD)
petsc_indices = self.da1.getAO().app2petsc(np.arange(self.nx*self.ny, dtype=np.int32))
ByTmp = Xglobal.getValues(petsc_indices).copy().reshape((self.ny, self.nx)).T
scatter.destroy()
Xglobal.destroy()
if nfourier_x >= 0:
# compute FFT, cut, compute inverse FFT
BxFft = rfft(BxTmp, axis=1)
ByFft = rfft(ByTmp, axis=1)
BxFft[:,nfourier_x+1:] = 0.
ByFft[:,nfourier_x+1:] = 0.
BxTmp = irfft(BxFft, axis=1)
ByTmp = irfft(ByFft, axis=1)
if nfourier_y >= 0:
BxFft = rfft(BxTmp, axis=0)
ByFft = rfft(ByTmp, axis=0)
BxFft[nfourier_y+1:,:] = 0.
ByFft[nfourier_y+1:,:] = 0.
BxTmp = irfft(BxFft, axis=0)
ByTmp = irfft(ByFft, axis=0)
Bx_arr = self.da1.getVecArray(self.Bx)
By_arr = self.da1.getVecArray(self.By)
Bx_arr[:,:] = BxTmp[xs:xe, ys:ye]
By_arr[:,:] = ByTmp[xs:xe, ys:ye]
Bx_arr = self.da1.getVecArray(self.Bx)
By_arr = self.da1.getVecArray(self.By)
Vx_arr = self.da1.getVecArray(self.Vx)
Vy_arr = self.da1.getVecArray(self.Vy)
x_arr = self.da7.getVecArray(self.x)
v_arr = self.da3.getVecArray(self.V)
b_arr = self.da2.getVecArray(self.B)
x_arr[xs:xe, ys:ye, 0] = Vx_arr[xs:xe, ys:ye]
x_arr[xs:xe, ys:ye, 1] = Vy_arr[xs:xe, ys:ye]
x_arr[xs:xe, ys:ye, 2] = Bx_arr[xs:xe, ys:ye]
x_arr[xs:xe, ys:ye, 3] = By_arr[xs:xe, ys:ye]
v_arr[xs:xe, ys:ye, 0] = Vx_arr[xs:xe, ys:ye]
v_arr[xs:xe, ys:ye, 1] = Vy_arr[xs:xe, ys:ye]
b_arr[xs:xe, ys:ye, 0] = Bx_arr[xs:xe, ys:ye]
b_arr[xs:xe, ys:ye, 1] = By_arr[xs:xe, ys:ye]
# compure generalised magnetic induction
self.da1.globalToLocal(self.Bx, self.localBx)
self.da1.globalToLocal(self.By, self.localBy)
self.da1.globalToLocal(self.Vx, self.localVx)
self.da1.globalToLocal(self.Vy, self.localVy)
Bx_arr = self.da1.getVecArray(self.localBx)
By_arr = self.da1.getVecArray(self.localBy)
Vx_arr = self.da1.getVecArray(self.localVx)
Vy_arr = self.da1.getVecArray(self.localVy)
Bix_arr = self.da1.getVecArray(self.Bix)
Biy_arr = self.da1.getVecArray(self.Biy)
for i in range(xs, xe):
for j in range(ys, ye):
Bix_arr[i,j] = self.derivatives.Bix(Bx_arr[...], By_arr[...], i-xs+2, j-ys+2, de)
Biy_arr[i,j] = self.derivatives.Biy(Bx_arr[...], By_arr[...], i-xs+2, j-ys+2, de)
# copy modified magnetic induction to solution vector
x_arr = self.da7.getVecArray(self.x)
b_arr = self.da2.getVecArray(self.Bi)
x_arr[xs:xe, ys:ye, 4] = Bix_arr[xs:xe, ys:ye]
x_arr[xs:xe, ys:ye, 5] = Biy_arr[xs:xe, ys:ye]
b_arr[xs:xe, ys:ye, 0] = Bix_arr[xs:xe, ys:ye]
b_arr[xs:xe, ys:ye, 1] = Biy_arr[xs:xe, ys:ye]
# compute pressure
self.da1.globalToLocal(self.Bix, self.localBix)
self.da1.globalToLocal(self.Biy, self.localBiy)
Bix_arr = self.da1.getVecArray(self.localBix)
Biy_arr = self.da1.getVecArray(self.localBiy)
P_arr = self.da1.getVecArray(self.P)
for i in range(xs, xe):
for j in range(ys, ye):
P_arr[i,j] = init_data.pressure(xc_arr[i,j] + 0.5 * self.hx, yc_arr[i,j] + 0.5 * self.hy, self.hx, self.hy) \
- 0.5 * 0.25 * (Bix_arr[i,j] + Bix_arr[i+1,j]) * (Bx_arr[i,j] + Bx_arr[i+1,j]) \
- 0.5 * 0.25 * (Biy_arr[i,j] + Biy_arr[i,j+1]) * (By_arr[i,j] + By_arr[i,j+1]) \
# - 0.5 * (0.25 * (Vx_arr[i,j] + Vx_arr[i+1,j])**2 + 0.25 * (Vy_arr[i,j] + Vy_arr[i,j+1])**2)
# copy pressure to solution vector
x_arr = self.da7.getVecArray(self.x)
v_arr = self.da3.getVecArray(self.V)
x_arr[xs:xe, ys:ye, 6] = P_arr [xs:xe, ys:ye]
v_arr[xs:xe, ys:ye, 2] = P_arr [xs:xe, ys:ye]
# update solution history
self.petsc_function.update_history(self.x)
self.petsc_euler.update_history(self.x)
self.petsc_faraday.update_history(self.x)
self.petsc_poisson.update_history(self.x)
hdf5_filename = cfg['io']['hdf5_output']
if PETSc.COMM_WORLD.getRank() == 0:
print(" Output: %s" % hdf5_filename)
hdf5out = h5py.File(hdf5_filename, "w", driver="mpio", comm=PETSc.COMM_WORLD.tompi4py())
for cfg_group in self.cfg:
for cfg_item in self.cfg[cfg_group]:
if self.cfg[cfg_group][cfg_item] != None:
value = self.cfg[cfg_group][cfg_item]
else:
value = ""
hdf5out.attrs[cfg_group + "." + cfg_item] = value
# if self.cfg["initial_data"]["python"] != None and self.cfg["initial_data"]["python"] != "":
# python_input = open("runs/" + self.cfg['initial_data']['python'] + ".py", 'r')
# python_file = python_input.read()
# python_input.close()
# else:
# python_file = ""
# hdf5out.attrs["initial_data.python_file"] = python_file
hdf5out.close()
# create HDF5 output file
self.hdf5_viewer = PETSc.ViewerHDF5().create(hdf5_filename,
mode=PETSc.Viewer.Mode.WRITE,
comm=PETSc.COMM_WORLD)
self.hdf5_viewer.pushGroup("/")
# write grid data to hdf5 file
coords_x = self.dax.getCoordinates()
coords_y = self.day.getCoordinates()
coords_x.setName('x')
coords_y.setName('y')
self.hdf5_viewer(coords_x)
self.hdf5_viewer(coords_y)
# write initial data to hdf5 file
self.hdf5_viewer.setTimestep(0)
self.save_hdf5_vectors()
def __del__(self):
self.hdf5_viewer.destroy()
self.snes_euler.destroy()
self.snes_faraday.destroy()
self.snes_poisson.destroy()
self.JE.destroy()
self.JF.destroy()
self.JP.destroy()
self.da1.destroy()
self.da2.destroy()
self.da3.destroy()
self.da7.destroy()
self.dax.destroy()
self.day.destroy()
def updateJacobian(self, snes, X, J, P):
self.petsc_function.update_previous(X)
self.petsc_function.formMat(J)
def updateJacobianEuler(self, snes, X, J, P):
self.petsc_euler.update_previous_V(X)
self.petsc_euler.formMat(J)
def updateJacobianFaraday(self, snes, X, J, P):
self.petsc_faraday.update_previous_Bi(X)
self.petsc_faraday.formMat(J)
def updateJacobianPoisson(self, snes, X, J, P):
self.petsc_poisson.update_previous_B(X)
self.petsc_poisson.formMat(J)
def run(self):
for itime in range(1, self.nt+1):
if PETSc.COMM_WORLD.getRank() == 0:
localtime = time.asctime( time.localtime(time.time()) )
print("\nit = %4d, t = %10.4f, %s" % (itime, self.ht*itime, localtime) )
print()
self.time.setValue(0, self.ht*itime)
# update Jacobian
self.update_jacobian = True
# build RHS and calculate norm
self.petsc_function.matrix_mult(self.x, self.b)
normi = self.b.norm()
norm1 = normi
for n in range(self.max_it):
# store previous norm
norm0 = norm1
# solve Euler equation
self.petsc_euler.update_previous(self.x)
self.snes_euler.solve(None, self.V)
self.copy_V_to_X()
#
# # solve Faraday equation
self.petsc_faraday.update_previous(self.x)
self.snes_faraday.solve(None, self.Bi)
self.copy_Bi_to_X()
# solve Poisson equation
self.petsc_poisson.update_previous(self.x)
self.snes_poisson.solve(None, self.B)
self.copy_B_to_X()
# build RHS and calculate norm
self.petsc_function.matrix_mult(self.x, self.b)
norm1 = self.b.norm()
# output some solver info
if PETSc.COMM_WORLD.getRank() == 0:
# print(" Euler Solver: %5i iterations" % (neuler) )
# print(" Faraday Solver: %5i iterations" % (nfaraday) )
# print(" Poisson Solver: %5i iterations" % (npoisson) )
print(" Nonlinear Solver: %5i iterations, funcnorm = %24.16E, rel = %24.16E, suc = %24.16E" % (n, norm1, abs(norm1/normi), abs(norm1-norm0)) )
# check breakout criteria
if norm1 < self.atol or abs(norm1/normi) < self.rtol or abs(norm1-norm0) < self.stol:
break
# update history
self.petsc_function.update_history(self.x)
self.petsc_euler.update_history(self.x)
self.petsc_faraday.update_history(self.x)
self.petsc_poisson.update_history(self.x)
# save to hdf5 file
if itime % self.nsave == 0 or itime == self.nt + 1:
self.save_to_hdf5()
def copy_V_to_X(self):
(xs, xe), (ys, ye) = self.da1.getRanges()
# copy solution from V to x vector
x_arr = self.da7.getVecArray(self.x)
v_arr = self.da3.getVecArray(self.V)
x_arr[xs:xe, ys:ye, 0] = v_arr[xs:xe, ys:ye, 0]
x_arr[xs:xe, ys:ye, 1] = v_arr[xs:xe, ys:ye, 1]
x_arr[xs:xe, ys:ye, 6] = v_arr[xs:xe, ys:ye, 2]
def copy_B_to_X(self):
(xs, xe), (ys, ye) = self.da1.getRanges()
# copy solution from B to x vector
x_arr = self.da7.getVecArray(self.x)
b_arr = self.da2.getVecArray(self.B)
x_arr[xs:xe, ys:ye, 2] = b_arr[xs:xe, ys:ye, 0]
x_arr[xs:xe, ys:ye, 3] = b_arr[xs:xe, ys:ye, 1]
def copy_Bi_to_X(self):
(xs, xe), (ys, ye) = self.da1.getRanges()
# copy solution from Bi to x vector
x_arr = self.da7.getVecArray(self.x)
b_arr = self.da2.getVecArray(self.Bi)
x_arr[xs:xe, ys:ye, 4] = b_arr[xs:xe, ys:ye, 0]
x_arr[xs:xe, ys:ye, 5] = b_arr[xs:xe, ys:ye, 1]
def save_to_hdf5(self):
(xs, xe), (ys, ye) = self.da1.getRanges()
# copy solution to B and V vectors
x_arr = self.da7.getVecArray(self.x)
Bix_arr = self.da1.getVecArray(self.Bix)
Biy_arr = self.da1.getVecArray(self.Biy)
Bx_arr = self.da1.getVecArray(self.Bx)
By_arr = self.da1.getVecArray(self.By)
Vx_arr = self.da1.getVecArray(self.Vx)
Vy_arr = self.da1.getVecArray(self.Vy)
P_arr = self.da1.getVecArray(self.P)
Vx_arr [xs:xe, ys:ye] = x_arr[xs:xe, ys:ye, 0]
Vy_arr [xs:xe, ys:ye] = x_arr[xs:xe, ys:ye, 1]
Bx_arr [xs:xe, ys:ye] = x_arr[xs:xe, ys:ye, 2]
By_arr [xs:xe, ys:ye] = x_arr[xs:xe, ys:ye, 3]
Bix_arr[xs:xe, ys:ye] = x_arr[xs:xe, ys:ye, 4]
Biy_arr[xs:xe, ys:ye] = x_arr[xs:xe, ys:ye, 5]
P_arr [xs:xe, ys:ye] = x_arr[xs:xe, ys:ye, 6]
# save timestep
self.hdf5_viewer.setTimestep(self.hdf5_viewer.getTimestep() + 1)
# save data
self.save_hdf5_vectors()
def save_hdf5_vectors(self):
self.hdf5_viewer(self.time)
self.hdf5_viewer(self.Bix)
self.hdf5_viewer(self.Biy)
self.hdf5_viewer(self.Bx)
self.hdf5_viewer(self.By)
self.hdf5_viewer(self.Vx)
self.hdf5_viewer(self.Vy)
self.hdf5_viewer(self.P)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PETSc MHD Solver in 2D')
parser.add_argument('runfile', metavar='runconfig', type=str,
help='Run Configuration File')
args = parser.parse_args()
petscvp = petscMHD2D(args.runfile)
petscvp.run()