-
Notifications
You must be signed in to change notification settings - Fork 9
/
04_generate_curve_using_bbs.py
executable file
·253 lines (182 loc) · 8.52 KB
/
04_generate_curve_using_bbs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#!/usr/bin/env python3
# This file is part of Million Dollar Curve
# Copyright (C) 2015, 2016 CryptoExperts
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
import argparse
import bbsengine
import json
import os
import utils
import subroutines
from datetime import datetime
import sys
import gmpy2
def main():
# Test local versions of libraries
utils.test_python_version()
utils.test_gmpy2_version()
utils.test_pari_version()
utils.test_pari_seadata()
now = datetime.now()
# Parse command line arguments
parser = argparse.ArgumentParser(description="Generate an Edwards curve over a given prime field, suited for cryptographic purposes.")
parser.add_argument("input_file",
help="""JSON file containing the BBS parameters and the prime of the underlying field (typically, the output of
03_generate_prime_field_using_bbs.py.
""")
parser.add_argument("output_file", help="Output file where this script will write the parameter d of the curve and the current BBS parameters.")
parser.add_argument("--start",
type=int,
help="Number of the candidate to start with (default is 1).",
default=1)
parser.add_argument("--max_nbr_of_tests",
type=int,
help="Number of candidates to test before stopping the script (default is to continue until success).")
parser.add_argument("--fast",
help=""" While computing a the curve cardinality with SAE, early exit when the cardinality will obviously be divisible by
a small integer > 4. This reduces the time required to find the final curve, but the
cardinalities of previous candidates are not fully computed.
""",
default=False,
action="store_true")
args = parser.parse_args()
# Check arguments
print("Checking inputs...")
output_file = args.output_file
if os.path.exists(output_file):
utils.exit_error("The output file '%s' already exists. Exiting."%(output_file))
input_file = args.input_file
with open(input_file, "r") as f:
data = json.load(f)
# Declare a few important variables
bbs_p = int(data["bbs_p"])
bbs_q = int(data["bbs_q"])
bbs_n = bbs_p * bbs_q
bbs_s = int(data["bbs_s"]) % bbs_n
p = int(data["p"])
start = max(int(args.start),1)
max_nbr_of_tests = None
if args.max_nbr_of_tests:
max_nbr_of_tests = int(args.max_nbr_of_tests)
if not subroutines.is_strong_strong_prime(bbs_p):
utils.exit_error("bbs_p is not a strong strong prime.")
if not subroutines.is_strong_strong_prime(bbs_q):
utils.exit_error("bbs_q is not a strong strong prime.")
if not (subroutines.deterministic_is_pseudo_prime(p) and p%4 == 3):
utils.exit_error("p is not a prime congruent to 3 modulo 4.")
# Initialize BBS
print("Initializing BBS...")
bbs = bbsengine.BBS(bbs_p, bbs_q, bbs_s)
# Info about the prime field
utils.colprint("Prime of the underlying prime field:", "%d (size: %d)"%(p, gmpy2.bit_length(p)))
size = gmpy2.bit_length(p) # total number of bits queried to bbs for each test
# Skip the first "start" candidates
candidate_nbr = start-1
bbs.skipbits(size * (start-1))
# Start looking for "d"
while True:
if max_nbr_of_tests and candidate_nbr >= start + max_nbr_of_tests - 1:
print("Did not find an adequate parameter, starting at candidate %d (included), limiting to %d candidates."%(start, max_nbr_of_tests))
utils.exit_error("Last candidate checked was number %d."%(candidate_nbr))
candidate_nbr += 1
bits = bbs.genbits(size)
d = 0
for bit in bits:
d = (d << 1) | bit
print("The candidate number %d is d = %d (ellapsed time: %s)"%(candidate_nbr, d, str(datetime.now()-now)))
# Test 1
if not utils.check(d != 0 and d < p, "d != 0 and d < p", 1):
continue
# Test 2
if not utils.check(gmpy2.legendre(d, p) == -1, "d is not a square modulo p", 2):
continue
# Test 3
if args.fast:
cardinality = subroutines.sea_edwards(1, d, p, 4)
else:
cardinality = subroutines.sea_edwards(1, d, p)
assert(cardinality % 4 == 0)
q = cardinality>>2
if not utils.check(subroutines.deterministic_is_pseudo_prime(q), "The curve cardinality / 4 is prime", 3):
continue
# Test 4
trace = p+1-cardinality
cardinality_twist = p+1+trace
assert(cardinality_twist % 4 == 0)
q_twist = cardinality_twist>>2
if not utils.check(subroutines.deterministic_is_pseudo_prime(q_twist), "The twist cardinality / 4 is prime", 4):
continue
# Test 5
if not utils.check(q != p and q_twist != p, "Curve and twist are safe against additive transfer", 5):
continue
# Test 6
embedding_degree = subroutines.embedding_degree(p, q)
if not utils.check(embedding_degree > (q-1) // 100, "Curve is safe against multiplicative transfer", 6):
continue
# Test 7
embedding_degree_twist = subroutines.embedding_degree(p, q_twist)
if not utils.check(embedding_degree_twist > (q_twist-1) // 100, "Twist is safe against multiplicative transfer", 7):
continue
# Test 8
D = subroutines.cm_field_discriminant(p, trace)
if not utils.check(abs(D) >= 2**100, "Absolute value of the discriminant is larger than 2^100", 8):
continue
break
# Find a base point
while True:
bits = bbs.genbits(size)
y = 0
for bit in bits:
y = (y<<1) | bit
u = int((1 - y**2) * gmpy2.invert(1 - d*y**2, p)) % p
if gmpy2.legendre(u, p) == -1:
continue
x = gmpy2.powmod(u, (p+1) // 4, p)
(x,y) = subroutines.add_on_edwards(x, y, x, y, d, p)
(x,y) = subroutines.add_on_edwards(x, y, x, y, d, p)
if (x, y) == (0, 1):
continue
assert((x**2 + y**2) % p == (1 + d*x**2*y**2) % p)
break
# Print some informations
utils.colprint("Number of the successful candidate:", str(candidate_nbr))
utils.colprint("Edwards elliptic curve parameter d is:", str(d))
utils.colprint("Number of points:", str(cardinality))
utils.colprint("Number of points on the twist:", str(cardinality_twist))
utils.colprint("Embedding degree of the curve:", "%d"%embedding_degree)
utils.colprint("Embedding degree of the twist:", "%d"%embedding_degree_twist)
utils.colprint("Discriminant:", "%d"%D)
utils.colprint("Trace:", "%d"%trace)
utils.colprint("Base point coordinates:", "(%d, %d)"%(x, y))
# Save p, d, x, y, etc. to the output_file
print("Saving the parameters to %s"%output_file)
bbs_s = bbs.s
with open(output_file, "w") as f:
json.dump({"p": int(p),
"bbs_p": int(bbs_p),
"bbs_q": int(bbs_q),
"bbs_s": int(bbs_s),
"candidate_nbr": int(candidate_nbr),
"d": int(d),
"cardinality": cardinality,
"cardinality_twist": cardinality_twist,
"embedding_degree": embedding_degree,
"embedding_degree_twist": embedding_degree_twist,
"discriminant": D,
"trace": trace,
"base_point_x": x,
"base_point_y": y},
f,
sort_keys=True)
if __name__ == "__main__":
main()