forked from greenlabjhmi/2018_Bacterial_Pipeline_riboseq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ribo_main.py
666 lines (494 loc) · 23 KB
/
ribo_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
'''
Script to filter, align and 3' map ribosome footprints
Copyright (C) 2019 Fuad Mohammad, [email protected]
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
'''
from datetime import datetime
from multiprocessing import Process
import os, time
import subprocess
import struct
import csv
from BCBio import GFF
from Bio import Seq
import cPickle as pickle
import pandas as pd
import numpy as np
from IPython.display import display
import ribo_util
'''
Table of Contents:
-- Filtering:
* skewer v0.2.2
-- Aligning:
* bowtie v0.12.7
-- Density:
* 3' alignment
'''
############################
##### Filtering #####
############################
def run_filter(inputs, paths_in, paths_out): # all arguments = dict
'''
Filter reads using skewer
'''
files = inputs['files']
run = inputs['run_filtering']
minlength = inputs['minlength']
maxlength = inputs['maxlength']
phred_cutoff = inputs['phred_cutoff']
linker = inputs['linker']
threads = inputs['threads'] # filterreads has its own threading,
filtering = []
log_data = {}
# If using Unique Molecular Index (UMI) in library prep. Skewer will not remove UMI
# so we will do it manually after. skewer output file will have UMI naming to identify it:
if inputs['run_filter_UMI'] == 'yes':
# UMI adds 10 nt to read
minlength = minlength + 10
maxlength = maxlength + 10
# for naming: UMI
UMI = '_UMI'
else:
UMI = ''
# return error if file names not specified
if not files:
print("There are no files")
return
# loop through files to filter
for fname in files:
file_in = paths_in['path_fastq'] + fname
file_out = paths_out['path_filter'] + fname + UMI
file_log = paths_out['path_log'] + fname + '_filter'
# if skewer filtering isnt needed, skip
if not run == 'yes':
if not os.path.exists(file_out+'-trimmed.fastq'):
print "ERROR: " + fname + " has not been filtered, change run setting"
continue
else:
print fname + " has been filtered"
continue
# return error if input file missing, and continue to next file
if not os.path.exists(file_in):
print "ERROR: " + fname + " has no FASTQ file, has been removed from analysis"
inputs['files'].remove(fname)
continue
# make commmand string
command_to_run = 'skewer -x %s -Q %d -l %d -L %d -o %s --quiet -t %d %s 1>>%s 2>%s' % (
linker,
phred_cutoff,
minlength,
maxlength,
file_out,
threads,
file_in,
file_log,
file_log
)
#Add filter parameters to log:
log_data['settings'] = {'linker': linker, 'phred_cutoff': phred_cutoff,
'minlength': minlength, 'maxlength': maxlength}
log_function = 'ribo_density'
ribo_util.analysis_log(fname, log_function, log_data, paths_in, paths_out)
filtering.append(command_to_run)
#print start time and run skewer
print "-----FILTER-----"
print '\nFiles to filter: ' + ', '.join(files)
print "Filter parameters are: \nmin length = %s \nmax length = %s \nphred cutoff = %s " % (
minlength, maxlength, phred_cutoff)
print "\n\tStarted filtering at " + str(datetime.now())
ribo_util.subprocess_wf(filtering, 1)
print "\tFinished filtering at " + str(datetime.now())
print "\tCOMPLETED FILTERING"
return inputs
def run_filter_UMI(inputs, paths_in, paths_out):
print "\n\tStarted UMI removal at " + str(datetime.now())
files = inputs['files']
run = inputs['run_filter_UMI']
linker_UMI = inputs['linker_UMI']
RT_UMI = inputs['linker_UMI']
for fname in files:
file_in = paths_out['path_filter'] + fname + '_UMI-trimmed.fastq'
file_out = paths_out['path_filter'] + fname + '-trimmed.fastq'
file_log = paths_out['path_log'] + fname + '_filter'
if not run == 'yes':
print fname + " will not be filtered for a UMI"
continue
else:
file_out = open(paths_out['path_filter'] + fname + '-trimmed.fastq', "w")
UMI = {}
umi = []
n_umi = []
umi_unique = []
with open(file_in, 'rb') as f:
count = 0
for line in f:
if count == 0:
count = 1
Identifier = line
continue
if count == 1:
count = 2
Sequence = line
continue
if count == 2:
count = 3
QIdentifier = line
continue
if count == 3:
count = 0
PHRED = line
Identifier = Identifier[:-1]
Sequence = Sequence[RT_UMI:-linker_UMI-1]
QIdentifier = QIdentifier[:-1]
PHRED = PHRED[RT_UMI:-linker_UMI-1]
file_out.write(Identifier + "\n" + Sequence + "\n" + QIdentifier + "\n" + PHRED + "\n")
umi_seq = Sequence[0:RT_UMI] + Sequence[-linker_UMI-1:-1]
if umi_seq not in umi:
umi.append(umi_seq)
n_umi.append(1)
umi_unique.append('yes')
umi_read.append('')
n_seq.append(1)
else:
index = umi.index(umi_seq)
n_umi[index] += 1
umi_unique[index] = 'no'
continue
UMI['UMI'] = umi
UMI['count'] = n_umi
UMI['unique'] = umi_unique
ribo_util.makePickle(UMI, file_log + fname + '_UMI', protocol=pickle.HIGHEST_PROTOCOL)
f.close()
file_out.close()
print "\tFinished UMI removal at " + str(datetime.now())
print "\tCOMPLETED UMI REMOVAL"
############################
##### Aligning #####
############################
def run_align(inputs, paths_in, paths_out): # all arguments = dict
'''Bowtie align'''
run = inputs['run_bowtie']
files = inputs['files']
threads = inputs['cores'] # bowtie uses 1 core per instance
if not files:
print("There are no files")
return
ladder = []
tRNA = []
rRNA = []
chromosome = []
for fname in files:
if not run == 'yes':
if not os.path.exists(paths_out['path_chr'] + fname + '_match.SAM'):
print "ERROR: " + fname + " has not been aligned, change run settings"
continue
else:
print fname + " has been aligned"
continue
if not os.path.exists(paths_out['path_filter'] + fname + '-trimmed.fastq'):
print "ERROR: " + fname + " has no filtered file, has been removed from analysis"
inputs['files'].remove(fname)
continue
file_log = paths_out['path_log'] + fname + '_bowtie'
# bowtie_1 will rewrite log
bowtie_1 = '%s -v 2 -y -m 1 -a --best --strata -S -p 2 --un '
bowtie_1 += '%s%s_nomatch.fastq --max %s%s_multi.fastq --al %s%s_match.fastq %s '
bowtie_1 += '%s%s %s%s 1>>%s 2>%s'
# bowtie will only add info to log
bowtie = '%s -v 2 -y -m 1 -a --best --strata -S -p 2 --un '
bowtie += '%s%s_nomatch.fastq --max %s%s_multi.fastq --al %s%s_match.fastq %s '
bowtie += '%s%s %s%s 1>>%s 2>>%s'
# first, align to ladder index to subtract
bowtie_ladder = bowtie_1 % (paths_in['path_bowtie'], paths_out['path_ladder'], fname,
paths_out['path_ladder'], fname, paths_out['path_ladder'], fname,
paths_in['btindex_ladder'],
paths_out['path_filter'], fname + '-trimmed.fastq',
paths_out['path_temp'], fname + '_ladder_match.SAM',
file_log, file_log)
ladder.append(bowtie_ladder)
# second, align to ladder index to subtract
bowtie_tRNA = bowtie % (paths_in['path_bowtie'], paths_out['path_trna'], fname,
paths_out['path_trna'], fname, paths_out['path_trna'], fname,
paths_in['btindex_trna'],
paths_out['path_ladder'], fname + '_nomatch.fastq',
paths_out['path_temp'], fname + '_tRNA_match.SAM',
file_log, file_log)
tRNA.append(bowtie_tRNA)
# third, align to the rRNA index
bowtie_rRNA = bowtie % (paths_in['path_bowtie'], paths_out['path_rrna'], fname,
paths_out['path_rrna'], fname, paths_out['path_rrna'], fname,
paths_in['btindex_rrna'],
paths_out['path_trna'], fname + '_nomatch.fastq',
paths_out['path_temp'], fname + '_rRNA_match.SAM',
file_log, file_log)
rRNA.append(bowtie_rRNA)
# then align to the chr index
bowtie_chr = bowtie % (paths_in['path_bowtie'], paths_out['path_chr'], fname,
paths_out['path_chr'], fname, paths_out['path_chr'], fname,
paths_in['btindex_chr'],
paths_out['path_rrna'], fname + '_nomatch.fastq',
paths_out['path_chr'], fname + '_match.SAM',
file_log, file_log)
chromosome.append(bowtie_chr)
print "\n------ALIGN------"
print '\nFiles to align: ' + ', '.join(files)
print "\n\tStarted Bowtie alignment at " + str(datetime.now())
ribo_util.subprocess_wf(ladder, threads)
print "\tFinished ladder removal at " + str(datetime.now())
ribo_util.subprocess_wf(tRNA, threads)
print "\tFinished tRNA removal at " + str(datetime.now())
ribo_util.subprocess_wf(rRNA, threads)
print "\tFinished rRNA removal at " + str(datetime.now())
ribo_util.subprocess_wf(chromosome, threads)
print "\tFinished chromosome alignment at " + str(datetime.now())
print "\tCOMPLETED ALIGNING"
return
############################
##### Density #####
############################
def density_3(fname, chr_sam, minlength, maxlength, path_wig, path_den, path_gff, data_type):
'''Density will be a size separated dictionary = {length : [reads at 0, reads at 1, ....]}
this makes it easier to select a size range later for analysis'''
fname = fname
chr_sam = chr_sam
minlength = minlength
maxlength = maxlength
GFFgen = GFF.parse(path_gff)
data_type = data_type
if data_type == 'ribo_seq':
plus_strand = '0'
minus_strand = '16'
else:
plus_strand = '16'
minus_strand = '0'
# open chr aligned sam file
f_samfile = open(chr_sam)
samfile = csv.reader(f_samfile,delimiter=' ')
# dictionaries to hold read counts
density_plus = {}
density_minus = {}
density_plus_sizesep = {}
density_minus_sizesep = {}
if minlength < 0 or maxlength < 0:
print "Error. Length input not valid."
return(0)
# Makes 2 sets of indices, one for all reads, and another for size separated:
for sequence in GFFgen:
density_plus[sequence.id] = [0 for x in range(len(sequence))]
density_minus[sequence.id] = [0 for x in range(len(sequence))]
for length in range(minlength, maxlength + 1):
density_plus_sizesep[length] = [0 for x in range(len(sequence))]
density_minus_sizesep[length] = [0 for x in range(len(sequence))]
total_reads = 0
mapped_reads = 0
# Loop through the samfile.
for read in samfile:
if read[0][0] == '@': # Ignore header lines.
continue
if read[1] == '4': # A bowtie mismatch.
continue
chrom = read[2] # chromosome identified for read in bowtie
readid = read[0] # read id
startp = int(read[3]) -1 # start position. Need to subtract 1 since genomic sequence starts at 1,
seq = Seq.Seq(read[9]) # sequence of the read
length = len(seq) # length of read
if chrom not in density_plus.keys():
print "Error: Bowtie index and GFF do not match"
total_reads += 1
# Note that Bowtie reverse complements any sequence aligning to the reverse strand.
# and so read[3] is the 3'-end of minus strand reads
# Filter to get rid of reads of particular length
if (length < minlength or length > maxlength):
continue
mapped_reads += 1
# 16 is the minus strand, 0 is the plus strand
if (read[1] == minus_strand):
start = startp
density_minus[chrom][start] += 1
density_minus_sizesep[length][start] += 1
if (read[1] == plus_strand):
start = startp + length - 1
density_plus[chrom][start] += 1
density_plus_sizesep[length][start] += 1
path_oldformat = path_den+"binary/"
if not os.path.exists(path_oldformat):
os.makedirs(path_oldformat)
density_plus[sequence.id] = [float(i) * 1000000 / float(mapped_reads) for i in density_plus[sequence.id]]
density_minus[sequence.id] = [float(i) * 1000000 / float(mapped_reads) for i in density_minus[sequence.id]]
ribo_util.writebin(density_plus,path_oldformat+fname+"_plus_")
ribo_util.makePickle(density_plus,path_den+"plus")
ribo_util.makePickle(density_plus_sizesep,path_den+"plus_sizesep")
ribo_util.countstowig(density_plus,path_wig+"_plus")
ribo_util.writebin(density_minus,path_oldformat+fname+"_minus_")
ribo_util.makePickle(density_minus,path_den+"minus")
ribo_util.makePickle(density_minus_sizesep,path_den+"minus_sizesep")
ribo_util.countstowig(density_minus,path_wig+"_minus")
def run_density(inputs, paths_in, paths_out): # all arguments = dict
files = inputs['files']
run = inputs['run_density']
minlength = inputs['minlength']
maxlength = inputs['maxlength']
threads = inputs['threads']
data_type = inputs['data_type']
if not files:
print("There are no files")
return
print "\n-----DENSITY-----"
print '\nFiles to condense: ' + ', '.join(files)
print "\n\tStarted density at " + str(datetime.now())
arguments = []
for fname in files:
# make paths for density files
path_d = paths_out['path_density'] + fname + "/"
path_w = paths_out['path_density'] + "wigfiles/"
if not os.path.exists(path_d):
os.makedirs(path_d)
if not os.path.exists(path_w):
os.makedirs(path_w)
path_den = path_d
path_wig = path_w + fname
path_sam = paths_out['path_chr'] + fname + '_match.SAM'
path_gff = paths_in['path_gff']
if not run == 'yes':
if not os.path.exists(path_den+"plus"):
print "ERROR: " + fname + " has no density, change run settings"
continue
else:
print fname + " has density file"
continue
if not os.path.exists(path_sam):
print "ERROR: " + fname + " has no alignment file, has been removed from analysis"
inputs['files'].remove(fname)
continue
argument = [fname, path_sam, minlength, maxlength, path_wig, path_den, path_gff, data_type]
arguments.append(argument)
ribo_util.multiprocess(density_3, arguments, threads)
print "\tFinished density at " + str(datetime.now())
print "\tCOMPLETED DENSITY"
##########################
def density_adjusted(fname, chr_sam, minlength, maxlength, path_wig, path_den, path_gff):
'''Density will be a size separated dictionary = {length : [reads at 0, reads at 1, ....]}
this makes it easier to select a size range later for analysis
adjusted: will shift reads larger than 24 to alignn 3' end'''
fname = fname
chr_sam = chr_sam
minlength = minlength
maxlength = maxlength
GFFgen = GFF.parse(path_gff)
# open chr aligned sam file
f_samfile = open(chr_sam)
samfile = csv.reader(f_samfile,delimiter=' ')
# dictionaries to hold read counts
density_plus = {}
density_minus = {}
density_plus_sizesep = {}
density_minus_sizesep = {}
if minlength < 0 or maxlength < 0:
print "Error. Length input not valid."
return(0)
# Makes 2 sets of indices, one for all reads, and another for size separated:
for sequence in GFFgen:
density_plus[sequence.id] = [0 for x in range(len(sequence)+20)]
density_minus[sequence.id] = [0 for x in range(len(sequence)+20)]
for length in range(minlength, maxlength + 1):
density_plus_sizesep[length] = [0 for x in range(len(sequence)+20)]
density_minus_sizesep[length] = [0 for x in range(len(sequence)+20)]
total_reads = 0
mapped_reads = 0
# Loop through the samfile.
for read in samfile:
if read[0][0] == '@': # Ignore header lines.
continue
if read[1] == '4': # A bowtie mismatch.
continue
chrom = read[2] # chromosome identified for read in bowtie
readid = read[0] # read id
startp = int(read[3]) -1 # start position. Need to subtract 1 since genomic sequence starts at 1,
seq = Seq.Seq(read[9]) # sequence of the read
length = len(seq) # length of read
if length < 23:
length_shift = 24 - length
else:
length_shift = 0
if chrom not in density_plus.keys():
print "Error: Bowtie index and GFF do not match"
total_reads += 1
# Note that Bowtie reverse complements any sequence aligning to the reverse strand.
# and so read[3] is the 3'-end of minus strand reads
# Filter to get rid of reads of particular length. Or a particular strand.
if (length < minlength or length > maxlength):
continue
mapped_reads += 1
# 16 is the minus strand, 0 is the plus strand
if (read[1] == '16'):
start = startp - length_shift
density_minus[chrom][start] += 1
density_minus_sizesep[length][start] += 1
if (read[1] == '0'):
start = startp + length - 1 + length_shift
density_plus[chrom][start] += 1
density_plus_sizesep[length][start] += 1
path_oldformat = path_den+"binary/"
if not os.path.exists(path_oldformat):
os.makedirs(path_oldformat)
density_plus[sequence.id] = [float(i) * 1000000 / float(mapped_reads) for i in density_plus[sequence.id]]
density_minus[sequence.id] = [float(i) * 1000000 / float(mapped_reads) for i in density_minus[sequence.id]]
ribo_util.writebin(density_plus,path_oldformat+fname+"_plus_")
ribo_util.makePickle(density_plus,path_den+"plus")
ribo_util.makePickle(density_plus_sizesep,path_den+"plus_sizesep")
ribo_util.countstowig(density_plus,path_wig+"_plus")
ribo_util.writebin(density_minus,path_oldformat+fname+"_minus_")
ribo_util.makePickle(density_minus,path_den+"minus")
ribo_util.makePickle(density_minus_sizesep,path_den+"minus_sizesep")
ribo_util.countstowig(density_minus,path_wig+"_minus")
def run_density_adjusted(inputs, paths_in, paths_out): # all arguments = dict
files = inputs['files']
run = inputs['run_density']
minlength = inputs['minlength']
maxlength = inputs['maxlength']
threads = inputs['threads']
if not files:
print("There are no files")
return
print "\n-----DENSITY-----"
print '\nFiles to condense: ' + ', '.join(files)
print "\n\tStarted density at " + str(datetime.now())
arguments = []
for fname in files:
# make paths for density files
path_d = paths_out['path_density'] + fname + "/adjusted/"
path_w = paths_out['path_density'] + "wigfiles/adjusted/"
if not os.path.exists(path_d):
os.makedirs(path_d)
if not os.path.exists(path_w):
os.makedirs(path_w)
path_den = path_d
path_wig = path_w + fname
path_sam = paths_out['path_chr'] + fname + '_match.SAM'
path_gff = paths_in['path_gff']
if not run == 'yes':
if not os.path.exists(path_den+"plus"):
print "ERROR: " + fname + " has no density, change run settings"
continue
else:
print fname + " has density file"
continue
if not os.path.exists(path_sam):
print "ERROR: " + fname + " has no alignment file, has been removed from analysis"
inputs['files'].remove(fname)
continue
argument = [fname, path_sam, minlength, maxlength, path_wig, path_den, path_gff]
arguments.append(argument)
ribo_util.multiprocess(density_adjusted, arguments, threads)
print "\tFinished density at " + str(datetime.now())
print "\tCOMPLETED DENSITY"