-
Notifications
You must be signed in to change notification settings - Fork 0
/
like_fourier_6x2pt.c
662 lines (593 loc) · 20.3 KB
/
like_fourier_6x2pt.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
#include <math.h>
#include <stdlib.h>
#if !defined(__APPLE__)
#include <malloc.h>
#endif
#include <stdio.h>
#include <assert.h>
#include <time.h>
#include <string.h>
#include <fftw3.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_erf.h>
#include <gsl/gsl_integration.h>
#include <gsl/gsl_spline.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_legendre.h>
#include <gsl/gsl_sf_bessel.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_sf_expint.h>
#include <gsl/gsl_deriv.h>
#include <gsl/gsl_interp2d.h>
#include <gsl/gsl_spline2d.h>
#include "../cosmolike_core/theory/basics.c"
#include "../cosmolike_core/theory/structs.c"
#include "../cosmolike_core/theory/parameters.c"
#include "../cosmolike_core/emu17/P_cb/emu.c"
#include "../cosmolike_core/theory/recompute.c"
#include "../cosmolike_core/theory/cosmo3D.c"
#include "../cosmolike_core/theory/redshift_spline.c"
#include "../cosmolike_core/theory/halo.c"
#include "../cosmolike_core/theory/HOD.c"
#include "../cosmolike_core/theory/pt.c"
#include "../cosmolike_core/theory/cosmo2D_fourier.c"
#include "../cosmolike_core/theory/IA.c"
#include "../cosmolike_core/theory/cluster.c"
#include "../cosmolike_core/theory/BAO.c"
#include "../cosmolike_core/theory/external_prior.c"
#include "../cosmolike_core/theory/init_baryon.c"
#include "init_LSSxCMB.c"
#include "../cosmolike_core/theory/priors_mpp.c"
// Naming convention:
// g = galaxy positions ("g" as in "galaxy")
// k = kappa CMB ("k" as in "kappa")
// s = kappa from source galaxies ("s" as in "shear")
// And alphabetical order
typedef double (*C_tomo_pointer)(double l, int n1, int n2);
void twopoint_via_hankel(double **xi, double *logthetamin, double *logthetamax, C_tomo_pointer C_tomo, int ni, int nj, int N_Bessel);
#include "../cosmolike_core/theory/CMBxLSS_fourier.c"
typedef struct input_nuisance_params_y3 {
double bias[10];
// double bias2[10];
double b_mag[10];
double lens_z_bias[10];
double source_z_bias[10];
double shear_m[10];
double p_ia[10];
// double bary[3];
} input_nuisance_params_y3;
typedef struct input_cosmo_params_y3 {
double omega_m;
double sigma_8;
double A_s;
double n_s;
double w0;
double wa;
double omega_b;
double omega_nuh2;
double h0;
double MGSigma;
double MGmu;
double theta_s;
} input_cosmo_params_y3;
double C_shear_tomo_sys(double ell,int z1,int z2);
double C_gl_tomo_sys(double ell,int zl,int zs);
double C_ks_sys(double ell, int zs);
void set_data_shear(int Ncl, double *ell, double *data, int start);
void set_data_ggl(int Ncl, double *ell, double *data, int start);
void set_data_clustering(int Ncl, double *ell, double *data, int start);
void set_data_gk(double *ell, double *data, int start);
void set_data_ks(double *ell, double *data, int start);
void set_data_kk(double *ell, double *data, int start);
void compute_data_vector(char *filename, double OMM, double S8, double NS, double W0,double WA, double OMB, double OMNUh2, double H0, double MGSigma, double MGmu, double THETA_S, \
double *B, double *b_mag,\
double *SP, double *CP, double *M, \
double *p_ia);
double log_multi_like(double OMM, double S8, double NS, double W0,double WA, double OMB, double OMNUh2, double H0, double MGSigma, double MGmu, double THETA_S, \
double *B, double *b_mag,\
double *SP, double *CP, double *M, \
double *p_ia);
void write_datavector_wrapper(char *filename, input_cosmo_params_y3 ic, input_nuisance_params_y3 in);
double log_like_wrapper(input_cosmo_params_y3 ic, input_nuisance_params_y3 in);
double get_sigma_8(input_cosmo_params_y3 ic);
double get_h0(input_cosmo_params_y3 ic);
double get_h0(input_cosmo_params_y3 ic){
return cosmology.h0;
}
double get_sigma_8(input_cosmo_params_y3 ic){
if (ic.A_s != cosmology.A_s){
printf("cosmology changed before calling get_sigma_8\n");
return -1.;
}
return cosmology.sigma_8;
}
double C_shear_tomo_sys(double ell, int z1, int z2)
{
double C;
// C= C_shear_tomo_nointerp(ell,z1,z2);
// if(like.IA==1) C+=C_II_nointerp(ell,z1,z2)+C_GI_nointerp(ell,z1,z2);
// if(like.IA!=1) C= C_shear_tomo_nointerp(ell,z1,z2);
// //if(like.IA==1) C= C_shear_shear_IA(ell,z1,z2);
// if(like.IA==1) C = C_shear_tomo_nointerp(ell,z1,z2)+C_II_nointerp(ell,z1,z2)+C_GI_nointerp(ell,z1,z2);
// if(like.IA==2) C += C_II_lin_nointerp(ell,z1,z2)+C_GI_lin_nointerp(ell,z1,z2);
if(like.IA==4){C = C_shear_shear_IA(ell,z1,z2);}
else{printf("only support IA==4!\n");exit(1);}
if(like.shearcalib==1) C *=(1.0+nuisance.shear_calibration_m[z1])*(1.0+nuisance.shear_calibration_m[z2]);
//printf("%le %d %d %le\n",ell,z1,z2,C_shear_tomo_nointerp(ell,z1,z2)+C_II_JB_nointerp(ell,z1,z2)+C_GI_JB_nointerp(ell,z1,z2));
return C;
}
double C_gl_tomo_sys(double ell,int zl,int zs)
{
double C;
// C=C_gl_tomo_nointerp(ell,zl,zs);
// if(like.IA==1) C += C_gI_nointerp(ell,zl,zs);
// if(like.IA!=1) C=C_gl_tomo_nointerp(ell,zl,zs);
// if(like.IA==1) C = C_ggl_IA(ell,zl,zs);
// if(like.IA==2) C += C_gI_lin_nointerp(ell,zl,zs);
if(like.IA==4){C = C_ggl_IA(ell,zl,zs);}
else{printf("only support IA==4!\n");exit(1);}
if(like.shearcalib==1) C *=(1.0+nuisance.shear_calibration_m[zs]);
return C;
}
double C_ks_sys(double ell, int zs)
{
double C;
C = C_ks(ell,zs);
if(like.shearcalib==1) C *=(1.0+nuisance.shear_calibration_m[zs]);
return C;
}
void set_data_shear(int Ncl, double *ell, double *data, int start)
{
int i,z1,z2,nz;
double a;
for (nz = 0; nz < tomo.shear_Npowerspectra; nz++){
z1 = Z1(nz); z2 = Z2(nz);
for (i = 0; i < Ncl; i++){
#ifdef SAMPLING
if (mask(Ncl*nz+i)){
#else
if (ell[i] < like.lmax_shear){
#endif
data[Ncl*nz+i] = C_shear_tomo_sys(ell[i],z1,z2);
}
else {data[Ncl*nz+i] = 0.;}
}
}
}
void set_data_ggl(int Ncl, double *ell, double *data, int start)
{
int i, zl,zs,nz;
for (nz = 0; nz < tomo.ggl_Npowerspectra; nz++){
zl = ZL(nz); zs = ZS(nz);
for (i = 0; i < Ncl; i++){
#ifdef SAMPLING
if (mask(start+(Ncl*nz)+i)){
#else
if (test_kmax(ell[i],zl)){
#endif
data[start+(Ncl*nz)+i] = C_gl_tomo_sys(ell[i],zl,zs);
}
else{
data[start+(Ncl*nz)+i] = 0.;
}
}
}
}
void set_data_clustering(int Ncl, double *ell, double *data, int start){
int i, nz;
for (nz = 0; nz < tomo.clustering_Npowerspectra; nz++){
//printf("%d %e %e\n",nz, gbias.b[nz][1],pf_photoz(gbias.b[nz][1],nz));
for (i = 0; i < Ncl; i++){
#ifdef SAMPLING
if (mask(start+(Ncl*nz)+i)){
#else
if (test_kmax(ell[i],nz)){
#endif
data[start+(Ncl*nz)+i] = C_cl_tomo_nointerp(ell[i],nz,nz);
}
else{data[start+(Ncl*nz)+i] = 0.;}
//printf("%d %d %le %le\n",nz,nz,ell[i],data[Ncl*(tomo.shear_Npowerspectra+tomo.ggl_Npowerspectra + nz)+i]);
}
}
}
void set_data_gk(double *ell, double *data, int start)
{
for (int nz=0; nz<tomo.clustering_Nbin; nz++){
for (int i=0; i<like.Ncl; i++){
#ifdef SAMPLING
if (mask(start+(like.Ncl*nz)+i)){
#else
if (ell[i]<like.lmax_kappacmb && test_kmax(ell[i],nz)){
#endif
data[start+(like.Ncl*nz)+i] = C_gk(ell[i],nz);
}
else{
data[start+(like.Ncl*nz)+i] = 0.;
}
}
}
}
void set_data_ks(double *ell, double *data, int start)
{
for (int nz=0; nz<tomo.shear_Nbin; nz++){
for (int i=0; i<like.Ncl; i++){
#ifdef SAMPLING
if (mask(start+(like.Ncl*nz)+i)){
#else
if (ell[i]<like.lmax_kappacmb && ell[i]<like.lmax_shear) {
#endif
data[start+(like.Ncl*nz)+i] = C_ks_sys(ell[i],nz);
}
else{
data[start+(like.Ncl*nz)+i] = 0.;
}
}
}
}
void set_data_kk(double *ell, double *data, int start)
{
for (int i=0; i<like.Ncl; i++){
#ifdef SAMPLING
if (mask(start+i)){
#else
if (ell[i]<like.lmax_kappacmb){
#endif
data[start+i] = C_kk(ell[i]);
}
else{
data[start+i] = 0.;
}
}
}
int set_cosmology_params(double OMM, double NORM, double NS, double W0,double WA, double OMB, double OMNUh2, double H0, double MGSigma, double MGmu, double THETA_S)
{
cosmology.Omega_m=OMM;
cosmology.Omega_v= 1.0-cosmology.Omega_m;
if (NORM < 1.e-7){
cosmology.A_s = NORM;
cosmology.sigma_8 = 0.;
}
else{
cosmology.sigma_8=NORM;
cosmology.A_s = 0.;
}
cosmology.theta_s = THETA_S;
cosmology.n_spec= NS;
cosmology.w0=W0;
cosmology.wa=WA;
cosmology.omb=OMB;
if (H0> 0){
cosmology.Omega_nu=OMNUh2/H0/H0;
}
else{cosmology.Omega_nu =0.0;}
cosmology.h0=H0;
cosmology.MGSigma = MGSigma;
cosmology.MGmu = MGmu;
// if (cosmology.Omega_m < 0.05 || cosmology.Omega_m > 0.6) return 0;
// if (cosmology.omb < 0.04 || cosmology.omb > 0.055) return 0;
// if (cosmology.sigma_8 < 0.5 || cosmology.sigma_8 > 1.1) return 0;
// if (cosmology.n_spec < 0.84 || cosmology.n_spec > 1.06) return 0;
// if (cosmology.w0 < -2.1 || cosmology.w0 > -0.0) return 0;
// if (cosmology.wa < -2.6 || cosmology.wa > 2.6) return 0;
// if (cosmology.h0 < 0.4 || cosmology.h0 > 0.9) return 0;
return 1;
}
void set_nuisance_shear_calib(double *M)
{
int i;
for(i=0;i<tomo.shear_Nbin;i++) {nuisance.shear_calibration_m[i] = M[i];}
}
int set_nuisance_shear_photoz(double *SP)
{
int i;
for(i=0;i<tomo.shear_Nbin;i++) {nuisance.bias_zphot_shear[i]=SP[i];}
// for (i=0;i<tomo.shear_Nbin; i++){
// nuisance.sigma_zphot_shear[i]=SPS1;
// if (nuisance.sigma_zphot_shear[i]<0.0001) return 0;
// }
return 1;
}
int set_nuisance_clustering_photoz(double *CP)
{
int i;
for(i=0;i<tomo.clustering_Nbin;i++) {nuisance.bias_zphot_clustering[i]=CP[i];}
// for (i=0;i<tomo.clustering_Nbin; i++){
// nuisance.sigma_zphot_clustering[i]=CPS1;
// if (nuisance.sigma_zphot_clustering[i]<0.0001) return 0;
// }
return 1;
}
int set_nuisance_ia(double *p_ia)
{
nuisance.A_ia=p_ia[0];
nuisance.eta_ia=p_ia[1];
nuisance.oneplusz0_ia = 1.62;
// if (nuisance.A_ia < 0.0 || nuisance.A_ia > 10.0) return 0;
// if (nuisance.eta_ia < -10.0 || nuisance.eta_ia> 10.0) return 0;
return 1;
}
int set_nuisance_gbias(double *B)
{
int i;
for (i = 0; i < tomo.clustering_Nbin; i++){
gbias.b[i] = B[i];
}
return 1;
}
int set_nuisance_bmag(double *b_mag)
{
int i;
for (i = 0; i < tomo.clustering_Nbin; i++){
gbias.b_mag[i] = b_mag[i];
}
return 1;
}
double log_multi_like(double OMM, double NORM, double NS, double W0,double WA, double OMB, double OMNUh2, double H0, double MGSigma, double MGmu, double THETA_S, \
double *B, double *b_mag,\
double *SP, double *CP, double *M, \
double *p_ia)
{
int i,j,k,m=0,l;
// printf("%lg, %lg, %lg, %lg, %lg, %lg, %lg, %lg, %lg, %lg, %lg, \n", OMM,NORM,NS,W0,WA,OMB,OMNUh2,H0, MGSigma, MGmu, THETA_S);
// for(i=0;i<10;i++){
// printf("%lg, ", B[i]);
// }printf("\n");
// for(i=0;i<10;i++){
// printf("%lg, ", b_mag[i]);
// }printf("\n");
// for(i=0;i<10;i++){
// printf("%lg, ", SP[i]);
// }printf("\n");
// for(i=0;i<10;i++){
// printf("%lg, ", CP[i]);
// }printf("\n");
// for(i=0;i<10;i++){
// printf("%lg, ", M[i]);
// }printf("\n");
// for(i=0;i<10;i++){
// printf("%lg, ", p_ia[i]);
// }printf("\n");
// printf("finish print parameters\n");
static double *pred;
static double *ell;
static double darg;
double chisqr,a,log_L_prior=0.0, log_L=0.0;;
if(ell==0){
pred= create_double_vector(0, like.Ndata-1);
ell= create_double_vector(0, like.Ncl-1);
darg=(log(like.lmax)-log(like.lmin))/like.Ncl;
for (l=0;l<like.Ncl;l++){
ell[l]=exp(log(like.lmin)+(l+0.5)*darg);
}
}
set_cosmology_params(OMM,NORM,NS,W0,WA,OMB,OMNUh2,H0, MGSigma, MGmu, THETA_S);
if (strcmp(pdeltaparams.runmode,"class")==0||strcmp(pdeltaparams.runmode,"CLASS")==0) {
int status = 0;
if (H0> 0 &&(OMB*H0*H0 >= 0.04 || OMB*H0*H0 <= 0.005)){printf("BBN\n"); return -1.e+15;}
p_class(1.,1.,0,&status);
if (status){printf("CLASS error\n"); return -1.e+15;}
}
set_nuisance_shear_calib(M);
if (set_nuisance_shear_photoz(SP)==0){
printf("Shear photo-z sigma too small\n");
return -1.0e15;
}
if (set_nuisance_clustering_photoz(CP)==0){
printf("Clustering photo-z sigma too small\n");
return -1.0e15;
}
if (set_nuisance_ia(p_ia)==0){
printf("IA parameters out of bounds\n");
return -1.0e15;
}
if (set_nuisance_gbias(B)==0){
printf("Bias out of bounds\n");
return -1.0e15;
}
if (set_nuisance_bmag(b_mag)==0){
printf("b_mag out of bounds\n");
return -1.0e15;
}
// printf("like %le %le %le %le %le %le %le %le\n",cosmology.Omega_m, cosmology.Omega_v,cosmology.sigma_8,cosmology.n_spec,cosmology.w0,cosmology.wa,cosmology.omb,cosmology.h0);
// printf("like %le %le %le %le\n",gbias.b[0][0], gbias.b[1][0], gbias.b[2][0], gbias.b[3][0]);
// for (i=0; i<10; i++){
// printf("nuisance %le %le %le\n",nuisance.shear_calibration_m[i],nuisance.bias_zphot_shear[i],nuisance.sigma_zphot_shear[i]);
// }
log_L_prior=0.0;
// if(like.Aubourg_Planck_BAO_SN==1) log_L_prior+=log_L_Planck_BAO_SN();
// if(like.SN==1) log_L_prior+=log_L_SN();
//if(like.BAO==1) log_L_prior+=log_L_BAO();
// if(like.Planck==1) log_L_prior+=log_L_Planck();
// if(like.Planck15_BAO_w0wa==1) log_L_prior+=log_L_Planck15_BAO_w0wa();//CH
//if(like.Planck15_BAO_H070p6_JLA_w0wa==1) log_L_prior+=log_L_Planck15_BAO_H070p6_JLA_w0wa();//CH
// if(like.IA!=0) log_L_prior+=log_L_ia();
// if(like.IA!=0) log_L_prior+=log_like_f_red();
if(like.wlphotoz!=0) log_L_prior+=log_L_wlphotoz();
if(like.clphotoz!=0) log_L_prior+=log_L_clphotoz();
if(like.shearcalib==1) log_L_prior+=log_L_shear_calib();
// if(like.IA!=0) {
// log_L = 0.0;
// log_L -= pow((nuisance.A_ia - prior.A_ia[0])/prior.A_ia[1],2.0);
// log_L -= pow((nuisance.eta_ia - prior.eta_ia[0])/prior.eta_ia[1],2.0);
// log_L_prior+=0.5*log_L;
// }
// if(like.baryons==1){
// log_L = 0.0;
// log_L -= pow((Q1 - prior.bary_Q1[0])/prior.bary_Q1[1],2.0);
// log_L -= pow((Q2 - prior.bary_Q2[0])/prior.bary_Q2[1],2.0);
// log_L -= pow((Q3 - prior.bary_Q3[0])/prior.bary_Q3[1],2.0);
// log_L_prior+=0.5*log_L;
// }
// if(like.clusterMobs==1) log_L_prior+=log_L_clusterMobs();
// printf("%d %d %d %d\n",like.BAO,like.wlphotoz,like.clphotoz,like.shearcalib);
// printf("logl %le %le %le %le\n",log_L_shear_calib(),log_L_wlphotoz(),log_L_clphotoz(),log_L_clusterMobs());
int start=0;
if(like.shear_shear==1) {
set_data_shear(like.Ncl, ell, pred, start);
start=start+like.Ncl*tomo.shear_Npowerspectra;
}
if(like.shear_pos==1){
set_data_ggl(like.Ncl, ell, pred, start);
start=start+like.Ncl*tomo.ggl_Npowerspectra;
}
if(like.pos_pos==1){
set_data_clustering(like.Ncl,ell,pred, start);
start=start+like.Ncl*tomo.clustering_Npowerspectra;
}
if(like.gk==1) {
set_data_gk(ell, pred, start);
start += like.Ncl*tomo.clustering_Nbin;
}
if(like.ks==1) {
set_data_ks(ell, pred, start);
start += like.Ncl*tomo.shear_Nbin;
}
if(like.kk==1) {
set_data_kk(ell, pred, start);
start += like.Ncl;
}
chisqr=0.0;
for (i=0; i<like.Ndata; i++){
for (j=0; j<like.Ndata; j++){
// a=(pred[i]-data_read(1,i)+Q1*bary_read(1,0,i)+Q2*bary_read(1,1,i)+Q3*bary_read(1,2,i))*invcov_read(1,i,j)*(pred[j]-data_read(1,j)+Q1*bary_read(1,0,j)+Q2*bary_read(1,1,j)+Q3*bary_read(1,2,j));
a=(pred[i]-data_read(1,i))*invcov_mask(1,i,j)*(pred[j]-data_read(1,j));
chisqr=chisqr+a;
}
// if (fabs(data_read(1,i)) < 1.e-25){
// printf("%d %le %le %le\n",i,data_read(1,i),pred[i],invcov_read(1,i,i));
// }
}
if (chisqr<0.0){
printf("error: chisqr = %le\n",chisqr);
//exit(EXIT_FAILURE);
}
if (chisqr<-1.0) exit(EXIT_FAILURE);
if (isnan(chisqr)){return -1.e+16;}
printf("%le\n",chisqr);
return -0.5*chisqr+log_L_prior;
}
void compute_data_vector(char *filename, double OMM, double NORM, double NS, double W0,double WA, double OMB, double OMNUh2, double H0, double MGSigma, double MGmu, double THETA_S, \
double *B, double *b_mag,\
double *SP, double *CP, double *M, \
double *p_ia){
int i,j,k,m=0,l;
static double *pred;
static double *ell;
static double darg;
double chisqr,a,log_L_prior=0.0;
if(ell==0){
pred= create_double_vector(0, like.Ndata-1);
ell= create_double_vector(0, like.Ncl-1);
darg=(log(like.lmax)-log(like.lmin))/like.Ncl;
for (l=0;l<like.Ncl;l++){
ell[l]=exp(log(like.lmin)+(l+0.5)*darg);
}
}
// for (l=0;l<like.Ncl;l++){
// printf("%d %le\n",i,ell[l]);
// }
set_cosmology_params(OMM,NORM,NS,W0,WA,OMB,OMNUh2,H0, MGSigma, MGmu, THETA_S);
set_nuisance_shear_calib(M);
set_nuisance_shear_photoz(SP);
set_nuisance_clustering_photoz(CP);
set_nuisance_ia(p_ia);
set_nuisance_gbias(B);
set_nuisance_bmag(b_mag);
int start=0;
if(like.shear_shear==1) {
set_data_shear(like.Ncl, ell, pred, start);
start=start+like.Ncl*tomo.shear_Npowerspectra;
}
if(like.shear_pos==1){
//printf("ggl\n");
set_data_ggl(like.Ncl, ell, pred, start);
start=start+like.Ncl*tomo.ggl_Npowerspectra;
}
if(like.pos_pos==1){
//printf("clustering\n");
set_data_clustering(like.Ncl,ell,pred, start);
start=start+like.Ncl*tomo.clustering_Npowerspectra;
}
if(like.gk==1) {
printf("Computing data vector: gk\n");
set_data_gk(ell, pred, start);
start += like.Ncl * tomo.clustering_Nbin;
}
if(like.ks==1) {
printf("Computing data vector: ks\n");
set_data_ks(ell, pred, start);
start += like.Ncl * tomo.shear_Nbin;
}
if (like.kk) {
printf("Computing data vector: kk\n");
set_data_kk(ell, pred, start);
start += like.Ncl;
}
FILE *F;
F=fopen(filename,"w");
for (i=0;i<like.Ndata; i++){
fprintf(F,"%d %le\n",i,pred[i]);
//printf("%d %le\n",i,pred[i]);
}
fclose(F);
// printf("&gbias.b1_function %p\n",&gbias.b1_function);
// printf("gbias.b1_function %p\n",gbias.b1_function);
// printf("bgal_z %p\n",bgal_z);
// printf("&bgal_z %p\n",&bgal_z);
// printf("b1_per_bin %p\n",b1_per_bin);
// printf("&b1_per_bin %p\n",&b1_per_bin);
}
void write_datavector_wrapper(char *filename, input_cosmo_params_y3 ic, input_nuisance_params_y3 in)
{
printf("write_datavector_wrapper: path to test data vector: %s\n",filename);
double NORM;
if (ic.A_s > 0. && ic.A_s < 1.e-5){NORM = ic.A_s;}
else{NORM = ic.sigma_8;}
if (NORM <= 0){
printf("write_datavector_wrapper called with A_s = %e, sigma_8 =%e\nEXIT\n",ic.A_s,ic.sigma_8);
exit(1);
}
compute_data_vector(filename, ic.omega_m, ic.sigma_8, ic.n_s, ic.w0, ic.wa, ic.omega_b,ic.omega_nuh2, ic.h0, ic.MGSigma, ic.MGmu, ic.theta_s,
in.bias, in.b_mag,
in.source_z_bias, in.lens_z_bias, in.shear_m,
in.p_ia);
}
double log_like_wrapper(input_cosmo_params_y3 ic, input_nuisance_params_y3 in)
{
double NORM;
if (ic.A_s > 0. && ic.A_s < 1.e-5){NORM = ic.A_s;}
else{NORM = ic.sigma_8;}
if (NORM <= 0){
printf("log_like_wrapper called with A_s = %e, sigma_8 =%e\nEXIT\n",ic.A_s,ic.sigma_8);
exit(1);
}
double like = log_multi_like(ic.omega_m, ic.sigma_8, ic.n_s, ic.w0, ic.wa, ic.omega_b,ic.omega_nuh2, ic.h0, ic.MGSigma, ic.MGmu,ic.theta_s,
in.bias, in.b_mag,
in.source_z_bias,in.lens_z_bias,in.shear_m,
in.p_ia);
return like;
}
void save_zdistr_sources(int zs){
double z,dz =(redshift.shear_zdistrpar_zmax-redshift.shear_zdistrpar_zmin)/300.0;
printf("Printing redshift distribution n(z) for source redshift bin %d\n",zs);
FILE *F1;
char filename[300];
sprintf(filename,"zdistris/zdist_sources_bin%d.txt",zs);
F1 = fopen(filename,"w");
for (z =redshift.shear_zdistrpar_zmin; z< redshift.shear_zdistrpar_zmax; z+= dz){
fprintf(F1,"%e %e\n", z, zdistr_photoz(z,zs));
}
}
void save_zdistr_lenses(int zl){
double z,dz =(redshift.clustering_zdistrpar_zmax-redshift.clustering_zdistrpar_zmin)/300.0;
printf("Printing redshift distribution n(z) and bias b(z) for lens redshift bin %d\n",zl);
FILE *F1;
char filename[300];
sprintf(filename,"zdistris/zdist_lenses_bin%d.txt", zl);
F1 = fopen(filename,"w");
for (z =redshift.clustering_zdistrpar_zmin; z< redshift.clustering_zdistrpar_zmax; z+= dz){
fprintf(F1,"%e %e\n", z, pf_photoz(z,zl));
}
}