-
Notifications
You must be signed in to change notification settings - Fork 0
/
cosmolike_libs_6x2pt.py
450 lines (372 loc) · 13.9 KB
/
cosmolike_libs_6x2pt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import emcee
import ctypes
import os
import numpy as np
import sys
import copy
dirname = os.path.split(__file__)[0]
lib_name = os.path.join(dirname, "./like_fourier_6x2pt.so")
lib=ctypes.cdll.LoadLibrary(lib_name)
double = ctypes.c_double
Double10 = double*10
write_cosmolike_datavector = lib.write_datavector_wrapper
initcosmo=lib.init_cosmo_runmode
initcosmo.argtypes=[ctypes.c_char_p]
initbins=lib.init_binning_fourier
initbins.argtypes=[ctypes.c_int,ctypes.c_double,ctypes.c_double]
initscalecuts=lib.init_scalecuts
initscalecuts.argtypes=[ctypes.c_double,ctypes.c_double]
initsources=lib.init_source_sample_mpp
initsources.argtypes=[ctypes.c_char_p,ctypes.c_int]
initlenses=lib.init_lens_sample_mpp
initlenses.argtypes=[ctypes.c_char_p,ctypes.c_int,Double10, Double10,ctypes.c_double]
initia=lib.init_IA_mpp
initia.argtypes=[ctypes.c_int]
initthetas=lib.init_sample_theta_s
initthetas.argtypes=[]
initprobes=lib.init_probes
initprobes.argtypes=[ctypes.c_char_p]
initdata_fourier=lib.init_data_fourier
initdata_fourier.argtypes=[ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p]
#init_filenames=lib.init_filenames
#init_filenames.argtypes=[ctypes.c_char_p, ctypes.c_char_p]
setprior_m=lib.set_shear_priors_mpp
setprior_m.argtypes =[Double10,Double10]
setprior_wlphotoz=lib.set_wlphotoz_priors_mpp
setprior_wlphotoz.argtypes =[Double10,Double10]
setprior_clusteringphotoz=lib.set_clphotoz_priors_mpp
setprior_clusteringphotoz.argtypes =[Double10,Double10]
get_sigma_8 = lib.get_sigma_8
get_h0 = lib.get_h0
log_like_wrapper = lib.log_like_wrapper
get_N_data = lib.get_N_data_masked
get_N_data.argtypes = []
get_N_data.restype = ctypes.c_int
get_N_tomo_shear = lib.get_N_tomo_shear
get_N_tomo_shear.argtypes = []
get_N_tomo_shear.restype = ctypes.c_int
get_N_tomo_clustering = lib.get_N_tomo_clustering
get_N_tomo_clustering.argtypes = []
get_N_tomo_clustering.restype = ctypes.c_int
get_N_ggl = lib.get_N_ggl
get_N_ggl.argtypes = []
get_N_ggl.restype = ctypes.c_int
initcmb = lib.init_cmb
initcmb.argtypes = [ctypes.c_char_p]
class IterableStruct(ctypes.Structure):
def names(self):
out = []
for name, obj, length in self.iter_parameters():
if length==0:
out.append(name)
else:
for i in range(length):
out.append(name + "_" + str(i))
return out
def iter_parameters(self):
for name,ptype in self._fields_:
obj = getattr(self, name)
if hasattr(ptype, "_length_"):
yield name, obj, ptype._length_
else:
yield name, obj, 0
def iter_parameters_filter(self, used):
for (name, obj, length) in self.iter_parameters():
if name in used:
yield name, obj, 0
def convert_to_vector(self):
p = []
for name, obj, length in self.iter_parameters():
if length==0:
p.append(obj)
else:
for i in range(length):
p.append(obj[i])
return p
def convert_to_vector_filter(self, used):
p = []
for name, obj, length in self.iter_parameters():
if length==0:
if name in used:
p.append(obj)
else:
for i in range(length):
if name+'_'+str(i) in used:
p.append(obj[i])
return p
def read_from_cosmosis(self, block):
for name,ptype in self._fields_:
obj = getattr(self, name)
if hasattr(ptype, "_length_"):
for i in range(ptype._length_):
obj[i] = block[self.section_name, name+"_"+str(i)]
else:
setattr(self, name, block[self.section_name, name])
def print_struct(self):
for name,ptype in self._fields_:
obj = getattr(self, name)
if hasattr(ptype, "_length_"):
for i in range(ptype._length_):
print ("%s[%d] = %f" % (name, i, obj[i]))
else:
print ("%s = %e" % (name, obj))
def number_of_doubles(self):
n=0
for name, ptype in self._fields_:
if hasattr(ptype, "_length_"):
n += ptype._length_
else:
n += 1
return n
def set_from_vector(self, p):
i=0
j=0
while i<len(p):
name,ptype = self._fields_[j]
j+=1
if ptype == double:
setattr(self, name, p[i])
i+=1
else:
x = getattr(self, name)
assert x._type_==double
for k in range(x._length_):
x[k] = p[i]
i+=1
class InputCosmologyParams(IterableStruct):
section_name = "cosmological_parameters"
_fields_ = [
("omega_m", double),
("sigma_8", double),
("A_s", double),
("n_s", double),
("w0", double),
("wa", double),
("omega_b", double),
("omega_nuh2", double),
("h0", double),
("MGSigma", double),
("MGmu", double),
("theta_s", double),
]
@classmethod
def fiducial(cls):
c = cls()
c.omega_m = -1.0
c.sigma_8 = -1.0
c.A_s = 0.0
c.n_s = 0.0
c.w0 = 0.0
c.wa = 0.0
c.omega_b = 0.0
c.omega_nuh2 = 0.0
c.h0 = 0.0
c.MGSigma = 0.0
c.MGmu = 0.0
c.theta_s = 0.0
return c
@classmethod
def fiducial_sigma(cls):
c = cls()
c.omega_m = 0.02
c.sigma_8 = 0.04
c.A_s = 2.e-10
c.n_s = 0.01
c.w0 = .1
c.wa = 0.02
c.omega_b = 0.001
c.omega_nuh2 = 0.0001
c.h0 = 0.01
c.MGSigma = 0.1
c.MGmu = 0.1
c.theta_s = 0.01
return c
class InputNuisanceParams(IterableStruct):
section_name = "nuisance_parameters"
_fields_ = [
("bias", double*10),
("b_mag", double*10),
("lens_z_bias", double*10),
("source_z_bias", double*10),
("shear_m", double*10),
("p_ia", double*10)
]
@classmethod
def fiducial(cls):
c = cls()
c.bias[:] = [1.7, 1.7, 1.7, 2.0,2.0,2.0,2.0,2.0,2.0,2.0]
c.b_mag[:] = [0.,0.,0.,0.,0.,0.,0.,0.,0.,0.]
c.lens_z_bias[:] = [0.,0.,0.,0.,0.,0.,0.,0.,0.,0.]
c.source_z_bias[:] = [0.,0.,0.,0.,0.,0.,0.,0.,0.,0.]
c.shear_m[:] = [0.,0.,0.,0.,0.,0.,0.,0.,0.,0.]
c.p_ia[:] = [0.,0.,0.,0.,0.,0.,0.,0.,0.,0.]
return c
@classmethod
def fiducial_sigma(cls):
c = cls()
c.bias[:] = np.repeat(0.2, 10)
# c.bias2[:] = np.repeat(0.05, 10)
c.b_mag[:] = np.repeat(0.05, 10)
# c.b_ta[:] = np.repeat(0.05, 10)
c.lens_z_bias[:] = np.repeat(0.002, 10)
c.source_z_bias[:] = np.repeat(0.002, 10)
c.shear_m[:] = np.repeat(0.002, 10)
c.p_ia[:] = np.repeat(0.1, 10)
return c
write_cosmolike_datavector.argtypes = [ctypes.c_char_p,InputCosmologyParams, InputNuisanceParams]
lib.log_like_wrapper.argtypes = [InputCosmologyParams, InputNuisanceParams]
lib.log_like_wrapper.restype = double
lib.get_sigma_8.argtypes=[InputCosmologyParams]
lib.get_sigma_8.restype = double
lib.get_h0.argtypes=[InputCosmologyParams]
lib.get_h0.restype = double
class LikelihoodFunctionWrapper(object):
def __init__(self, varied_parameters, cosmo_min, cosmo_fiducial, cosmo_max, nuisance_min, nuisance_fiducial, nuisance_max):
self.varied_parameters = varied_parameters
self.cosmo_min = cosmo_min
self.cosmo_fid = cosmo_fiducial
self.cosmo_max = cosmo_max
self.nuisance_min = nuisance_min
self.nuisance_fid = nuisance_fiducial
self.nuisance_max = nuisance_max
def fill_varied(self, icp, inp, x):
assert len(x) == len(self.varied_parameters), "Wrong number of parameters"
i = 0
for s in [icp, inp]:
for name, obj, length in s.iter_parameters():
if length==0:
if name in self.varied_parameters:
setattr(s, name, x[i])
i+=1
else:
for j in range(length):
name_i = name + "_" + str(j)
if name_i in self.varied_parameters:
obj[j] = x[i]
i+=1
def prior_cosmology(self, InputCosmologyParams):
good = True
for p in InputCosmologyParams.names():
if p in self.varied_parameters:
v = getattr(InputCosmologyParams,p)
min_v = getattr(self.cosmo_min, p)
max_v = getattr(self.cosmo_max,p)
if v<min_v or v>max_v:
# print "Cosmo param {} out of bounds {} [{},{}]".format(p,v,min_v,max_v)
good=False
if good:
return 0.0
else:
return -np.inf
def prior_nuisance(self, InputNuisanceParams):
params = ["bias", "b_mag", "p_ia"]
good = True
for p in params:
for i in range(10):
if '%s_%d'%(p,i) in self.varied_parameters:
min_val = getattr(self.nuisance_min,p)[i]
max_val = getattr(self.nuisance_max,p)[i]
value = getattr(InputNuisanceParams,p)[i]
if value<min_val or value>max_val:
# print "Nuisance parameter {}[{}] out of bounds {} [{},{}]".format(p,i,value,min_val, max_val)
good=False
if good:
return 0.0
else:
return -np.inf
def __call__(self, x):
icp = copy.deepcopy(self.cosmo_fid)
inp = copy.deepcopy(self.nuisance_fid)
self.fill_varied(icp, inp, x)
# print
# icp.print_struct()
# inp.print_struct()
# print
flat_prior = self.prior_cosmology(icp) + self.prior_nuisance(inp)
if not np.isfinite(flat_prior):
# print "outside flat prior range"
return -np.inf,-1.
like = lib.log_like_wrapper(icp, inp)
print(like)
# print inp.p_ia[0], inp.p_ia[1], '<-- p_ia'
# print inp.bias[0], inp.bias[1], inp.bias[2], inp.bias[3], inp.bias[4], '<-- bias'
# print inp.b_mag[0], inp.b_mag[1], inp.b_mag[2], inp.b_mag[3], inp.b_mag[4], '<-- bmag'
if like < -1.0e+14:
return -np.inf,-1.
return like,get_sigma_8(icp)
# def sample_cosmology_only(MG = False):
# if MG:
# varied_parameters = InputCosmologyParams().names()
# else:
# varied_parameters = ['omega_m']
# varied_parameters.append('sigma_8')
# varied_parameters.append('n_s')
# varied_parameters.append('w0')
# varied_parameters.append('wa')
# varied_parameters.append('omega_b')
# varied_parameters.append('h0')
# varied_parameters.append('theta_s')
# return varied_parameters
# def sample_cosmology_6x2_allsys(tomo_N_shear,tomo_N_lens,MG = False):
# varied_parameters = sample_cosmology_only(MG)
# varied_parameters += ['bias_%d'%i for i in xrange(tomo_N_lens)]
# varied_parameters += ['b_mag_%d'%i for i in xrange(tomo_N_lens)]
# varied_parameters += ['source_z_bias_%d'%i for i in xrange(tomo_N_shear)]
# # varied_parameters.append('source_z_s')
# varied_parameters += ['lens_z_bias_%d'%i for i in xrange(tomo_N_lens)]
# # varied_parameters.append('lens_z_s')
# varied_parameters += ['shear_m_%d'%i for i in xrange(tomo_N_shear)]
# # 2 parameters for IA NLA model
# varied_parameters += ['p_ia_%d'%i for i in xrange(2)]
# # varied_parameters.append('A_ia')
# # varied_parameters.append('beta_ia')
# # varied_parameters.append('eta_ia')
# # varied_parameters.append('eta_ia_highz')
# # varied_parameters += ['bary_%d'%i for i in xrange(3)]
# return varied_parameters
#def likelihood_task(p):
# return my_likelihood(p)
def sample_main(varied_parameters, iterations, nwalker, nthreads,
filename, cosmo_min, cosmo_fid, cosmo_max, nuisance_min, nuisance_fid, nuisance_max,
pool=None):
cosmo_fid.print_struct()
nuisance_fid.print_struct()
print (varied_parameters)
likelihood = LikelihoodFunctionWrapper(varied_parameters,
cosmo_min, cosmo_fid, cosmo_max, nuisance_min,
nuisance_fid,nuisance_max)
# global my_likelihood
# my_likelihood = likelihood
starting_point = []
starting_point += cosmo_fid.convert_to_vector_filter(varied_parameters)
starting_point += nuisance_fid.convert_to_vector_filter(varied_parameters)
print ("Starting point = ", starting_point)
std = InputCosmologyParams.fiducial_sigma().convert_to_vector_filter(varied_parameters)
std += InputNuisanceParams().fiducial_sigma().convert_to_vector_filter(varied_parameters)
p0 = emcee.utils.sample_ball(starting_point, std, size=nwalker)
ndim = len(starting_point)
print ("ndim = ", ndim)
print ("start = ", starting_point)
print ("std = ", std)
#dtype = [("h", float), ("sigma_8", float)]
sampler = emcee.EnsembleSampler(nwalker, ndim, likelihood, #blobs_dtype=dtype,
threads=nthreads, pool=pool)
### try to write to multiple files
try:
from mpi4py import MPI
pid = MPI.COMM_WORLD.rank
psize = MPI.COMM_WORLD.size
filename = filename+"_%d-%d"%(pid, psize)
except ImportError:
print("mpi4py not found\n Write chains into single file\n")
f = open(filename, 'w')
#write header here
f.write('# ' + ' '.join(varied_parameters)+" sigma_8 log_like\n")
for (p, loglike, state, blobs) in sampler.sample(p0,iterations=iterations):
# for row,h,s8,logl in zip(p,blobs["h"],blobs["sigma_8"],loglike):
for row,s8,logl in zip(p,blobs,loglike):
p_text = ' '.join(str(r) for r in row)
f.write('%s %e %e\n' % (p_text,s8,logl))
f.flush()
f.close()
pool.close()