forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ft_dipolesimulation.m
250 lines (224 loc) · 8.1 KB
/
ft_dipolesimulation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
function [simulated] = ft_dipolesimulation(cfg)
% FT_DIPOLESIMULATION computes the field or potential of a simulated dipole
% and returns a datastructure identical to the FT_PREPROCESSING function.
%
% Use as
% data = ft_dipolesimulation(cfg)
%
% The dipoles position and orientation have to be specified with
% cfg.dip.pos = [Rx Ry Rz] (size Nx3)
% cfg.dip.mom = [Qx Qy Qz] (size 3xN)
%
% The timecourse of the dipole activity is given as a single vector or as a
% cell-array with one vectors per trial
% cfg.dip.signal
% or by specifying a sine-wave signal
% cfg.dip.frequency in Hz
% cfg.dip.phase in radians
% cfg.dip.amplitude per dipole
% cfg.ntrials number of trials
% cfg.triallength time in seconds
% cfg.fsample sampling frequency in Hz
%
% Random white noise can be added to the data in each trial, either by
% specifying an absolute or a relative noise level
% cfg.relnoise = add noise with level relative to simulated signal
% cfg.absnoise = add noise with absolute level
% cfg.randomseed = 'yes' or a number or vector with the seed value (default = 'yes')
%
% Optional input arguments are
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'),
% see FT_CHANNELSELECTION for details
% cfg.dipoleunit = units for dipole amplitude (default nA*m)
% cfg.chanunit = units for the channel data
%
% The volume conduction model of the head should be specified as
% cfg.headmodel = structure with volume conduction model, see FT_PREPARE_HEADMODEL
%
% The EEG or MEG sensor positions should be specified as
% cfg.elec = structure with electrode positions, see FT_DATATYPE_SENS
% cfg.grad = structure with gradiometer definition, see FT_DATATYPE_SENS
% cfg.elecfile = name of file containing the electrode positions, see FT_READ_SENS
% cfg.gradfile = name of file containing the gradiometer definition, see FT_READ_SENS
%
% See also FT_SOURCEANALYSIS, FT_DIPOLEFITTING, FT_TIMELOCKSIMULATION,
% FT_FREQSIMULATION, FT_CONNECTIVITYSIMULATION
% Undocumented local options
% cfg.feedback
% cfg.previous
% cfg.version
% Copyright (C) 2004, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble provenance
ft_preamble randomseed
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
cfg = ft_checkconfig(cfg, 'renamed', {'hdmfile', 'headmodel'});
cfg = ft_checkconfig(cfg, 'renamed', {'vol', 'headmodel'});
% set the defaults
if ~isfield(cfg, 'dip'), cfg.dip = []; end
if ~isfield(cfg.dip, 'pos'), cfg.dip.pos = [-5 0 15]; end
if ~isfield(cfg.dip, 'mom'), cfg.dip.mom = [1 0 0]'; end
if ~isfield(cfg, 'fsample'), cfg.fsample = 250; end
if ~isfield(cfg, 'relnoise'), cfg.relnoise = 0; end
if ~isfield(cfg, 'absnoise'), cfg.absnoise = 0; end
if ~isfield(cfg, 'feedback'), cfg.feedback = 'text'; end
if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end
if ~isfield(cfg, 'dipoleunit'), cfg.dipoleunit = 'nA*m'; end
if ~isfield(cfg, 'chanunit'), cfg.chanunit = {}; end
cfg.dip = fixdipole(cfg.dip);
Ndipoles = size(cfg.dip.pos,1);
% prepare the volume conductor and the sensor array
[headmodel, sens, cfg] = prepare_headmodel(cfg, []);
if ~isfield(cfg, 'ntrials')
if isfield(cfg.dip, 'signal')
cfg.ntrials = length(cfg.dip.signal);
else
cfg.ntrials = 20;
end
end
Ntrials = cfg.ntrials;
if isfield(cfg.dip, 'frequency')
% this should be a column vector
cfg.dip.frequency = cfg.dip.frequency(:);
end
if isfield(cfg.dip, 'phase')
% this should be a column vector
cfg.dip.phase = cfg.dip.phase(:);
end
% no signal was given, compute a cosine-wave signal as timcourse for the dipole
if ~isfield(cfg.dip, 'signal')
% set some additional defaults if neccessary
if ~isfield(cfg.dip, 'frequency')
cfg.dip.frequency = ones(Ndipoles,1)*10;
end
if ~isfield(cfg.dip, 'phase')
cfg.dip.phase = zeros(Ndipoles,1);
end
if ~isfield(cfg.dip, 'amplitude')
cfg.dip.amplitude = ones(Ndipoles,1);
end
if ~isfield(cfg, 'triallength')
cfg.triallength = 1;
end
% compute a cosine-wave signal wit the desired frequency, phase and amplitude for each dipole
nsamples = round(cfg.triallength*cfg.fsample);
time = (0:(nsamples-1))/cfg.fsample;
for i=1:Ndipoles
cfg.dip.signal(i,:) = cos(cfg.dip.frequency(i)*time*2*pi + cfg.dip.phase(i)) * cfg.dip.amplitude(i);
end
end
% construct the timecourse of the dipole activity for each individual trial
if ~iscell(cfg.dip.signal)
dipsignal = {};
time = {};
nsamples = length(cfg.dip.signal);
for trial=1:Ntrials
% each trial has the same dipole signal
dipsignal{trial} = cfg.dip.signal;
time{trial} = (0:(nsamples-1))/cfg.fsample;
end
else
dipsignal = {};
time = {};
for trial=1:Ntrials
% each trial has a different dipole signal
dipsignal{trial} = cfg.dip.signal{trial};
time{trial} = (0:(length(dipsignal{trial})-1))/cfg.fsample;
end
end
dippos = cfg.dip.pos;
dipmom = cfg.dip.mom;
if ~iscell(dipmom)
dipmom = {dipmom};
end
if ~iscell(dippos)
dippos = {dippos};
end
if length(dippos)==1
dippos = repmat(dippos, 1, Ntrials);
elseif length(dippos)~=Ntrials
error('incorrect number of trials specified in the dipole position');
end
if length(dipmom)==1
dipmom = repmat(dipmom, 1, Ntrials);
elseif length(dipmom)~=Ntrials
error('incorrect number of trials specified in the dipole moment');
end
simulated.trial = {};
simulated.time = {};
ft_progress('init', cfg.feedback, 'computing simulated data');
for trial=1:Ntrials
ft_progress(trial/Ntrials, 'computing simulated data for trial %d\n', trial);
if numel(cfg.chanunit) == numel(cfg.channel)
lf = ft_compute_leadfield(dippos{trial}, sens, headmodel, 'dipoleunit', cfg.dipoleunit, 'chanunit', cfg.chanunit);
else
lf = ft_compute_leadfield(dippos{trial}, sens, headmodel);
end
nsamples = size(dipsignal{trial},2);
nchannels = size(lf,1);
simulated.trial{trial} = zeros(nchannels,nsamples);
for i = 1:3,
simulated.trial{trial} = simulated.trial{trial} + lf(:,i:3:end) * ...
(repmat(dipmom{trial}(i:3:end),1,nsamples) .* dipsignal{trial});
end
simulated.time{trial} = time{trial};
end
ft_progress('close');
if ft_senstype(sens, 'meg')
simulated.grad = sens;
elseif ft_senstype(sens, 'meg')
simulated.elec = sens;
end
% determine RMS value of simulated data
ss = 0;
sc = 0;
for trial=1:Ntrials
ss = ss + sum(simulated.trial{trial}(:).^2);
sc = sc + length(simulated.trial{trial}(:));
end
rms = sqrt(ss/sc);
fprintf('RMS value of simulated data is %g\n', rms);
% add noise to the simulated data
for trial=1:Ntrials
relnoise = randn(size(simulated.trial{trial})) * cfg.relnoise * rms;
absnoise = randn(size(simulated.trial{trial})) * cfg.absnoise;
simulated.trial{trial} = simulated.trial{trial} + relnoise + absnoise;
end
simulated.fsample = cfg.fsample;
simulated.label = sens.label;
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble randomseed
ft_postamble provenance simulated
ft_postamble history simulated
ft_postamble savevar simulated