-
Notifications
You must be signed in to change notification settings - Fork 7
/
amazon_reviews_final.py
553 lines (335 loc) · 15 KB
/
amazon_reviews_final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
#!/usr/bin/env python
# coding: utf-8
# In[6]:
from attention import AttentionLayer
# In[4]:
import numpy as np
import pandas as pd
import re
from bs4 import BeautifulSoup
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from nltk.corpus import stopwords
from tensorflow.keras.layers import Input, LSTM, Embedding, Dense, Concatenate, TimeDistributed
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import EarlyStopping
import warnings
pd.set_option("display.max_colwidth", 200)
warnings.filterwarnings("ignore")
# In[5]:
data=pd.read_csv("Reviews.csv",nrows=100000)
# In[7]:
data
# In[ ]:
data.drop_duplicates(subset=['Text'],inplace=True)#dropping duplicates
data.dropna(axis=0,inplace=True)#dropping na
# In[ ]:
data.info()
# In[1]:
contraction_mapping = {"ain't": "is not", "aren't": "are not","can't": "cannot", "'cause": "because", "could've": "could have", "couldn't": "could not",
"didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not", "hasn't": "has not", "haven't": "have not",
"he'd": "he would","he'll": "he will", "he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will", "how's": "how is",
"I'd": "I would", "I'd've": "I would have", "I'll": "I will", "I'll've": "I will have","I'm": "I am", "I've": "I have", "i'd": "i would",
"i'd've": "i would have", "i'll": "i will", "i'll've": "i will have","i'm": "i am", "i've": "i have", "isn't": "is not", "it'd": "it would",
"it'd've": "it would have", "it'll": "it will", "it'll've": "it will have","it's": "it is", "let's": "let us", "ma'am": "madam",
"mayn't": "may not", "might've": "might have","mightn't": "might not","mightn't've": "might not have", "must've": "must have",
"mustn't": "must not", "mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have","o'clock": "of the clock",
"oughtn't": "ought not", "oughtn't've": "ought not have", "shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have",
"she'd": "she would", "she'd've": "she would have", "she'll": "she will", "she'll've": "she will have", "she's": "she is",
"should've": "should have", "shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have","so's": "so as",
"this's": "this is","that'd": "that would", "that'd've": "that would have", "that's": "that is", "there'd": "there would",
"there'd've": "there would have", "there's": "there is", "here's": "here is","they'd": "they would", "they'd've": "they would have",
"they'll": "they will", "they'll've": "they will have", "they're": "they are", "they've": "they have", "to've": "to have",
"wasn't": "was not", "we'd": "we would", "we'd've": "we would have", "we'll": "we will", "we'll've": "we will have", "we're": "we are",
"we've": "we have", "weren't": "were not", "what'll": "what will", "what'll've": "what will have", "what're": "what are",
"what's": "what is", "what've": "what have", "when's": "when is", "when've": "when have", "where'd": "where did", "where's": "where is",
"where've": "where have", "who'll": "who will", "who'll've": "who will have", "who's": "who is", "who've": "who have",
"why's": "why is", "why've": "why have", "will've": "will have", "won't": "will not", "won't've": "will not have",
"would've": "would have", "wouldn't": "would not", "wouldn't've": "would not have", "y'all": "you all",
"y'all'd": "you all would","y'all'd've": "you all would have","y'all're": "you all are","y'all've": "you all have",
"you'd": "you would", "you'd've": "you would have", "you'll": "you will", "you'll've": "you will have",
"you're": "you are", "you've": "you have"}
# In[2]:
contraction_mapping
# In[ ]:
stop_words = set(stopwords.words('english'))
def text_cleaner(text,num):
newString = text.lower()
newString = BeautifulSoup(newString, "lxml").text
newString = re.sub(r'\([^)]*\)', '', newString)
newString = re.sub('"','', newString)
newString = ' '.join([contraction_mapping[t] if t in contraction_mapping else t for t in newString.split(" ")])
newString = re.sub(r"'s\b","",newString)
newString = re.sub("[^a-zA-Z]", " ", newString)
newString = re.sub('[m]{2,}', 'mm', newString)
if(num==0):
tokens = [w for w in newString.split() if not w in stop_words]
else:
tokens=newString.split()
long_words=[]
for i in tokens:
if len(i)>1: #removing short word
long_words.append(i)
return (" ".join(long_words)).strip()
# In[ ]:
#call the function
cleaned_text = []
for t in data['Text']:
cleaned_text.append(text_cleaner(t,0))
# In[ ]:
cleaned_text[:5]
# In[ ]:
#call the function
cleaned_summary = []
for t in data['Summary']:
cleaned_summary.append(text_cleaner(t,1))
# In[ ]:
cleaned_summary[:10]
# In[ ]:
data['cleaned_text']=cleaned_text
data['cleaned_summary']=cleaned_summary
# In[ ]:
data.replace('', np.nan, inplace=True)
data.dropna(axis=0,inplace=True)
# In[ ]:
import matplotlib.pyplot as plt
text_word_count = []
summary_word_count = []
# populate the lists with sentence lengths
for i in data['cleaned_text']:
text_word_count.append(len(i.split()))
for i in data['cleaned_summary']:
summary_word_count.append(len(i.split()))
length_df = pd.DataFrame({'text':text_word_count, 'summary':summary_word_count})
length_df.hist(bins = 30)
plt.show()
# In[ ]:
cnt=0
for i in data['cleaned_summary']:
if(len(i.split())<=8):
cnt=cnt+1
print(cnt/len(data['cleaned_summary']))
# In[ ]:
max_text_len=30
max_summary_len=8
# In[ ]:
cleaned_text =np.array(data['cleaned_text'])
cleaned_summary=np.array(data['cleaned_summary'])
short_text=[]
short_summary=[]
for i in range(len(cleaned_text)):
if(len(cleaned_summary[i].split())<=max_summary_len and len(cleaned_text[i].split())<=max_text_len):
short_text.append(cleaned_text[i])
short_summary.append(cleaned_summary[i])
df=pd.DataFrame({'text':short_text,'summary':short_summary})
# In[ ]:
df['summary'] = df['summary'].apply(lambda x : 'sostok '+ x + ' eostok')
# In[ ]:
from sklearn.model_selection import train_test_split
x_tr,x_val,y_tr,y_val=train_test_split(np.array(df['text']),np.array(df['summary']),test_size=0.1,random_state=0,shuffle=True)
# In[ ]:
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
#prepare a tokenizer for reviews on training data
x_tokenizer = Tokenizer()
x_tokenizer.fit_on_texts(list(x_tr))
# In[ ]:
thresh=4
cnt=0
tot_cnt=0
freq=0
tot_freq=0
for key,value in x_tokenizer.word_counts.items():
tot_cnt=tot_cnt+1
tot_freq=tot_freq+value
if(value<thresh):
cnt=cnt+1
freq=freq+value
print("% of rare words in vocabulary:",(cnt/tot_cnt)*100)
print("Total Coverage of rare words:",(freq/tot_freq)*100)
# In[ ]:
#prepare a tokenizer for reviews on training data
x_tokenizer = Tokenizer(num_words=tot_cnt-cnt)
x_tokenizer.fit_on_texts(list(x_tr))
#convert text sequences into integer sequences
x_tr_seq = x_tokenizer.texts_to_sequences(x_tr)
x_val_seq = x_tokenizer.texts_to_sequences(x_val)
#padding zero upto maximum length
x_tr = pad_sequences(x_tr_seq, maxlen=max_text_len, padding='post')
x_val = pad_sequences(x_val_seq, maxlen=max_text_len, padding='post')
#size of vocabulary ( +1 for padding token)
x_voc = x_tokenizer.num_words + 1
# In[ ]:
x_voc
# In[ ]:
#prepare a tokenizer for reviews on training data
y_tokenizer = Tokenizer()
y_tokenizer.fit_on_texts(list(y_tr))
# In[ ]:
thresh=6
cnt=0
tot_cnt=0
freq=0
tot_freq=0
for key,value in y_tokenizer.word_counts.items():
tot_cnt=tot_cnt+1
tot_freq=tot_freq+value
if(value<thresh):
cnt=cnt+1
freq=freq+value
print("% of rare words in vocabulary:",(cnt/tot_cnt)*100)
print("Total Coverage of rare words:",(freq/tot_freq)*100)
# In[ ]:
#prepare a tokenizer for reviews on training data
y_tokenizer = Tokenizer(num_words=tot_cnt-cnt)
y_tokenizer.fit_on_texts(list(y_tr))
#convert text sequences into integer sequences
y_tr_seq = y_tokenizer.texts_to_sequences(y_tr)
y_val_seq = y_tokenizer.texts_to_sequences(y_val)
#padding zero upto maximum length
y_tr = pad_sequences(y_tr_seq, maxlen=max_summary_len, padding='post')
y_val = pad_sequences(y_val_seq, maxlen=max_summary_len, padding='post')
#size of vocabulary
y_voc = y_tokenizer.num_words +1
# In[ ]:
y_tokenizer.word_counts['sostok'],len(y_tr)
# In[ ]:
ind=[]
for i in range(len(y_tr)):
cnt=0
for j in y_tr[i]:
if j!=0:
cnt=cnt+1
if(cnt==2):
ind.append(i)
y_tr=np.delete(y_tr,ind, axis=0)
x_tr=np.delete(x_tr,ind, axis=0)
# In[ ]:
ind=[]
for i in range(len(y_val)):
cnt=0
for j in y_val[i]:
if j!=0:
cnt=cnt+1
if(cnt==2):
ind.append(i)
y_val=np.delete(y_val,ind, axis=0)
x_val=np.delete(x_val,ind, axis=0)
# In[ ]:
from keras import backend as K
K.clear_session()
latent_dim = 300
embedding_dim=100
# Encoder
encoder_inputs = Input(shape=(max_text_len,))
#embedding layer
enc_emb = Embedding(x_voc, embedding_dim,trainable=True)(encoder_inputs)
#encoder lstm 1
encoder_lstm1 = LSTM(latent_dim,return_sequences=True,return_state=True,dropout=0.4,recurrent_dropout=0.4)
encoder_output1, state_h1, state_c1 = encoder_lstm1(enc_emb)
#encoder lstm 2
encoder_lstm2 = LSTM(latent_dim,return_sequences=True,return_state=True,dropout=0.4,recurrent_dropout=0.4)
encoder_output2, state_h2, state_c2 = encoder_lstm2(encoder_output1)
#encoder lstm 3
encoder_lstm3=LSTM(latent_dim, return_state=True, return_sequences=True,dropout=0.4,recurrent_dropout=0.4)
encoder_outputs, state_h, state_c= encoder_lstm3(encoder_output2)
# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None,))
#embedding layer
dec_emb_layer = Embedding(y_voc, embedding_dim,trainable=True)
dec_emb = dec_emb_layer(decoder_inputs)
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True,dropout=0.4,recurrent_dropout=0.2)
decoder_outputs,decoder_fwd_state, decoder_back_state = decoder_lstm(dec_emb,initial_state=[state_h, state_c])
# Attention layer
attn_layer = AttentionLayer(name='attention_layer')
attn_out, attn_states = attn_layer([encoder_outputs, decoder_outputs])
# Concat attention input and decoder LSTM output
decoder_concat_input = Concatenate(axis=-1, name='concat_layer')([decoder_outputs, attn_out])
#dense layer
decoder_dense = TimeDistributed(Dense(y_voc, activation='softmax'))
decoder_outputs = decoder_dense(decoder_concat_input)
# Define the model
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
model.summary()
# In[ ]:
model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy')
# In[ ]:
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1,patience=2)
# In[ ]:
history=model.fit([x_tr,y_tr[:,:-1]], y_tr.reshape(y_tr.shape[0],y_tr.shape[1], 1)[:,1:] ,epochs=50,callbacks=[es],batch_size=128, validation_data=([x_val,y_val[:,:-1]], y_val.reshape(y_val.shape[0],y_val.shape[1], 1)[:,1:]))
# In[ ]:
from matplotlib import pyplot
pyplot.plot(history.history['loss'], label='train')
pyplot.plot(history.history['val_loss'], label='test')
pyplot.legend()
pyplot.show()
# In[ ]:
reverse_target_word_index=y_tokenizer.index_word
reverse_source_word_index=x_tokenizer.index_word
target_word_index=y_tokenizer.word_index
# In[ ]:
# Encode the input sequence to get the feature vector
encoder_model = Model(inputs=encoder_inputs,outputs=[encoder_outputs, state_h, state_c])
# Decoder setup
# Below tensors will hold the states of the previous time step
decoder_state_input_h = Input(shape=(latent_dim,))
decoder_state_input_c = Input(shape=(latent_dim,))
decoder_hidden_state_input = Input(shape=(max_text_len,latent_dim))
# Get the embeddings of the decoder sequence
dec_emb2= dec_emb_layer(decoder_inputs)
# To predict the next word in the sequence, set the initial states to the states from the previous time step
decoder_outputs2, state_h2, state_c2 = decoder_lstm(dec_emb2, initial_state=[decoder_state_input_h, decoder_state_input_c])
#attention inference
attn_out_inf, attn_states_inf = attn_layer([decoder_hidden_state_input, decoder_outputs2])
decoder_inf_concat = Concatenate(axis=-1, name='concat')([decoder_outputs2, attn_out_inf])
# A dense softmax layer to generate prob dist. over the target vocabulary
decoder_outputs2 = decoder_dense(decoder_inf_concat)
# Final decoder model
decoder_model = Model(
[decoder_inputs] + [decoder_hidden_state_input,decoder_state_input_h, decoder_state_input_c],
[decoder_outputs2] + [state_h2, state_c2])
# In[ ]:
def decode_sequence(input_seq):
# Encode the input as state vectors.
e_out, e_h, e_c = encoder_model.predict(input_seq)
# Generate empty target sequence of length 1.
target_seq = np.zeros((1,1))
# Populate the first word of target sequence with the start word.
target_seq[0, 0] = target_word_index['sostok']
stop_condition = False
decoded_sentence = ''
while not stop_condition:
output_tokens, h, c = decoder_model.predict([target_seq] + [e_out, e_h, e_c])
# Sample a token
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_token = reverse_target_word_index[sampled_token_index]
if(sampled_token!='eostok'):
decoded_sentence += ' '+sampled_token
# Exit condition: either hit max length or find stop word.
if (sampled_token == 'eostok' or len(decoded_sentence.split()) >= (max_summary_len-1)):
stop_condition = True
# Update the target sequence (of length 1).
target_seq = np.zeros((1,1))
target_seq[0, 0] = sampled_token_index
# Update internal states
e_h, e_c = h, c
return decoded_sentence
# In[ ]:
def seq2summary(input_seq):
newString=''
for i in input_seq:
if((i!=0 and i!=target_word_index['sostok']) and i!=target_word_index['eostok']):
newString=newString+reverse_target_word_index[i]+' '
return newString
def seq2text(input_seq):
newString=''
for i in input_seq:
if(i!=0):
newString=newString+reverse_source_word_index[i]+' '
return newString
# In[ ]:
for i in range(0,100):
print("Review:",seq2text(x_tr[i]))
print("Original summary:",seq2summary(y_tr[i]))
print("Predicted summary:",decode_sequence(x_tr[i].reshape(1,max_text_len)))
print("\n")