-
Notifications
You must be signed in to change notification settings - Fork 2
/
Productivity.m
42 lines (35 loc) · 2.04 KB
/
Productivity.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
% Productivity.m is a routine that draws random series of the productivity
% shocks and simulates the corresponding series of the productivity levels;
% see "Numerically Stable and Accurate Stochastic Simulation Approaches for
% Solving Dynamic Economic Models" by Kenneth L. Judd, Lilia Maliar and
% Serguei Maliar, (2011), Quantitative Economics 2/2, 173–210 (henceforth,
% JMM, 2011).
%
% This version: July 14, 2011. First version: August 27, 2009.
% -------------------------------------------------------------------------
% Inputs: "T" is the simulation length; T>=1;
% "N" is the number of countries; N>=1;
% "a_init" is the initial condition for the productivity levels of
% N countries; 1-by-N;
% "rho" and "sigma" are the parameters of the model
% Output: "a" are the time series of the productivity levels of N countries;
% T-by-N
% -------------------------------------------------------------------------
% Copyright © 2011 by Lilia Maliar and Serguei Maliar. All rights reserved.
% The code may be used, modified and redistributed under the terms provided
% in the file "License_Agreement.txt".
% -------------------------------------------------------------------------
function a = Productivity(T,N,a_init,sigma,rho)
EPSI = randn(T,1); % A random draw of common-for-all-countries productivity
% shocks for T periods; T-by-1
epsi = randn(T,N); % A random draw of country-specific productivity shocks
% for T periods and N countries; T-by-N
epsi = (epsi+EPSI*ones(1,N))*sigma;
% Compute the error terms in the process for productivity
% level using condition (4) in JMM (2011); T-by-N
a(1,1:N) = a_init; % Initial condition for the productivity levels; 1-by-N
for t = 1:T-1;
a(t+1,:) = a(t,:).^rho.*exp(epsi(t+1,:));
% Compute the next-period productivity levels using
% condition (4) in JMM (2011); 1-by-N
end;