forked from RWKV/rwkv.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chat_with_bot.py
280 lines (207 loc) · 9.26 KB
/
chat_with_bot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# Provides terminal-based chat interface for RWKV model.
# Usage: python chat_with_bot.py C:\rwkv.cpp-169M.bin
# Prompts and code adapted from https://github.com/BlinkDL/ChatRWKV/blob/9ca4cdba90efaee25cfec21a0bae72cbd48d8acd/chat.py
import os
import argparse
import pathlib
import copy
import torch
import sampling
import rwkv_cpp_model
import rwkv_cpp_shared_library
from rwkv_tokenizer import get_tokenizer
import json
from typing import List, Dict, Optional
import time
# ======================================== Script settings ========================================
# English, Chinese, Japanese
LANGUAGE: str = 'English'
# QA: Question and Answer prompt to talk to an AI assistant.
# Chat: chat prompt (need a large model for adequate quality, 7B+).
PROMPT_TYPE: str = 'QA'
MAX_GENERATION_LENGTH: int = 250
# Sampling temperature. It could be a good idea to increase temperature when top_p is low.
TEMPERATURE: float = 0.8
# For better Q&A accuracy and less diversity, reduce top_p (to 0.5, 0.2, 0.1 etc.)
TOP_P: float = 0.5
# Penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
PRESENCE_PENALTY: float = 0.2
# Penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
FREQUENCY_PENALTY: float = 0.2
END_OF_LINE_TOKEN: int = 187
DOUBLE_END_OF_LINE_TOKEN: int = 535
END_OF_TEXT_TOKEN: int = 0
# =================================================================================================
parser = argparse.ArgumentParser(description='Provide terminal-based chat interface for RWKV model')
parser.add_argument('model_path', help='Path to RWKV model in ggml format')
parser.add_argument('tokenizer', help='Tokenizer to use; supported tokenizers: 20B, world', nargs='?', type=str, default='20B')
args = parser.parse_args()
script_dir: pathlib.Path = pathlib.Path(os.path.abspath(__file__)).parent
with open(script_dir / 'prompt' / f'{LANGUAGE}-{PROMPT_TYPE}.json', 'r', encoding='utf8') as json_file:
prompt_data = json.load(json_file)
user, bot, separator, init_prompt = prompt_data['user'], prompt_data['bot'], prompt_data['separator'], prompt_data['prompt']
assert init_prompt != '', 'Prompt must not be empty'
tokenizer_decode, tokenizer_encode = get_tokenizer(args.tokenizer)
library = rwkv_cpp_shared_library.load_rwkv_shared_library()
print(f'System info: {library.rwkv_get_system_info_string()}')
print('Loading RWKV model')
model = rwkv_cpp_model.RWKVModel(library, args.model_path)
# =================================================================================================
processed_tokens: List[int] = []
logits: Optional[torch.Tensor] = None
state: Optional[torch.Tensor] = None
def process_tokens(_tokens: List[int], new_line_logit_bias: float = 0.0) -> None:
global processed_tokens, logits, state
processed_tokens += _tokens
for _token in _tokens:
logits, state = model.eval(_token, state, state, logits)
logits[END_OF_LINE_TOKEN] += new_line_logit_bias
state_by_thread: Dict[str, Dict] = {}
def save_thread_state(_thread: str) -> None:
state_by_thread[_thread] = {
'tokens': copy.deepcopy(processed_tokens),
'logits': copy.deepcopy(logits),
'state': copy.deepcopy(state)
}
def load_thread_state(_thread: str) -> None:
global processed_tokens, logits, state
thread_state = state_by_thread[_thread]
processed_tokens = copy.deepcopy(thread_state['tokens'])
logits = copy.deepcopy(thread_state['logits'])
state = copy.deepcopy(thread_state['state'])
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end.
# See https://github.com/BlinkDL/ChatRWKV/pull/110/files
def split_last_end_of_line(tokens):
if len(tokens) > 0 and tokens[-1] == DOUBLE_END_OF_LINE_TOKEN:
tokens = tokens[:-1] + [END_OF_LINE_TOKEN, END_OF_LINE_TOKEN]
return tokens
# =================================================================================================
processing_start = time.time()
prompt_tokens = tokenizer_encode(init_prompt)
prompt_token_count = len(prompt_tokens)
print(f'Processing {prompt_token_count} prompt tokens, may take a while')
process_tokens(split_last_end_of_line(prompt_tokens))
processing_duration = time.time() - processing_start
print(f'Processed in {int(processing_duration)} s, {int(processing_duration / prompt_token_count * 1000)} ms per token')
save_thread_state('chat_init')
save_thread_state('chat')
print(f'\nChat initialized! Your name is {user}. Write something and press Enter. Use \\n to add line breaks to your message.')
while True:
# Read user input
user_input = input(f'> {user}{separator} ')
msg = user_input.replace('\\n', '\n').strip()
temperature = TEMPERATURE
top_p = TOP_P
if '-temp=' in msg:
temperature = float(msg.split('-temp=')[1].split(' ')[0])
msg = msg.replace('-temp='+f'{temperature:g}', '')
if temperature <= 0.2:
temperature = 0.2
if temperature >= 5:
temperature = 5
if '-top_p=' in msg:
top_p = float(msg.split('-top_p=')[1].split(' ')[0])
msg = msg.replace('-top_p='+f'{top_p:g}', '')
if top_p <= 0:
top_p = 0
msg = msg.strip()
# + reset --> reset chat
if msg == '+reset':
load_thread_state('chat_init')
save_thread_state('chat')
print(f'{bot}{separator} Chat reset.\n')
continue
elif msg[:5].lower() == '+gen ' or msg[:3].lower() == '+i ' or msg[:4].lower() == '+qa ' or msg[:4].lower() == '+qq ' or msg.lower() == '+++' or msg.lower() == '++':
# +gen YOUR PROMPT --> free single-round generation with any prompt. Requires Novel model.
if msg[:5].lower() == '+gen ':
new = '\n' + msg[5:].strip()
state = None
processed_tokens = []
process_tokens(tokenizer_encode(new))
save_thread_state('gen_0')
# +i YOUR INSTRUCT --> free single-round generation with any instruct. Requires Raven model.
elif msg[:3].lower() == '+i ':
new = f'''
Below is an instruction that describes a task. Write a response that appropriately completes the request.
# Instruction:
{msg[3:].strip()}
# Response:
'''
state = None
processed_tokens = []
process_tokens(tokenizer_encode(new))
save_thread_state('gen_0')
# +qq YOUR QUESTION --> answer an independent question with more creativity (regardless of context).
elif msg[:4].lower() == '+qq ':
new = '\nQ: ' + msg[4:].strip() + '\nA:'
state = None
processed_tokens = []
process_tokens(tokenizer_encode(new))
save_thread_state('gen_0')
# +qa YOUR QUESTION --> answer an independent question (regardless of context).
elif msg[:4].lower() == '+qa ':
load_thread_state('chat_init')
real_msg = msg[4:].strip()
new = f'{user}{separator} {real_msg}\n\n{bot}{separator}'
process_tokens(tokenizer_encode(new))
save_thread_state('gen_0')
# +++ --> continue last free generation (only for +gen / +i)
elif msg.lower() == '+++':
try:
load_thread_state('gen_1')
save_thread_state('gen_0')
except Exception as e:
print(e)
continue
# ++ --> retry last free generation (only for +gen / +i)
elif msg.lower() == '++':
try:
load_thread_state('gen_0')
except Exception as e:
print(e)
continue
thread = 'gen_1'
else:
# + --> alternate chat reply
if msg.lower() == '+':
try:
load_thread_state('chat_pre')
except Exception as e:
print(e)
continue
# chat with bot
else:
load_thread_state('chat')
new = f'{user}{separator} {msg}\n\n{bot}{separator}'
process_tokens(tokenizer_encode(new), new_line_logit_bias=-999999999)
save_thread_state('chat_pre')
thread = 'chat'
# Print bot response
print(f'> {bot}{separator}', end='')
start_index: int = len(processed_tokens)
accumulated_tokens: List[int] = []
token_counts: Dict[int, int] = {}
for i in range(MAX_GENERATION_LENGTH):
for n in token_counts:
logits[n] -= PRESENCE_PENALTY + token_counts[n] * FREQUENCY_PENALTY
token: int = sampling.sample_logits(logits, temperature, top_p)
if token == END_OF_TEXT_TOKEN:
print()
break
if token not in token_counts:
token_counts[token] = 1
else:
token_counts[token] += 1
process_tokens([token])
# Avoid UTF-8 display issues
accumulated_tokens += [token]
decoded: str = tokenizer_decode(accumulated_tokens)
if '\uFFFD' not in decoded:
print(decoded, end='', flush=True)
accumulated_tokens = []
if thread == 'chat':
if '\n\n' in tokenizer_decode(processed_tokens[start_index:]):
break
if i == MAX_GENERATION_LENGTH - 1:
print()
save_thread_state(thread)