forked from fishaudio/Bert-VITS2
-
Notifications
You must be signed in to change notification settings - Fork 8
/
all_process.py
1492 lines (1378 loc) · 64.5 KB
/
all_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import glob
import json
import os
import platform
import shutil
import signal
import subprocess
import webbrowser
import GPUtil
import gradio as gr
import psutil
import torch
import yaml
from config import yml_config
from tools.log import logger
bert_model_paths = [
"./bert/chinese-roberta-wwm-ext-large/pytorch_model.bin",
"./bert/deberta-v2-large-japanese-char-wwm/pytorch_model.bin",
"./bert/deberta-v3-large/pytorch_model.bin",
"./bert/deberta-v3-large/spm.model",
]
emo_model_paths = [
"./emotional/clap-htsat-fused/pytorch_model.bin"
]
train_base_model_paths = ["D_0.pth", "G_0.pth", "DUR_0.pth"]
default_yaml_path = "default_config.yml"
default_config_path = "configs/config.json"
def load_yaml_data_in_raw(yml_path=yml_config):
with open(yml_path, "r", encoding="utf-8") as file:
# data = yaml.safe_load(file)
data = file.read()
return str(data)
def load_json_data_in_raw(json_path):
with open(json_path, "r", encoding="utf-8") as file:
json_data = json.load(file)
formatted_json_data = json.dumps(json_data, ensure_ascii=False, indent=2)
return formatted_json_data
def load_json_data_in_fact(json_path):
with open(json_path, "r", encoding="utf-8") as file:
json_data = json.load(file)
return json_data
def load_yaml_data_in_fact(yml_path=yml_config):
with open(yml_path, "r", encoding="utf-8") as file:
yml = yaml.safe_load(file)
# data = file.read()
return yml
def fill_openi_token(token: str):
yml = load_yaml_data_in_fact()
yml["mirror"] = "openi"
yml["openi_token"] = token
write_yaml_data_in_fact(yml)
msg = "openi 令牌已填写完成"
logger.info(msg)
return gr.Textbox(value=msg), gr.Code(value=load_yaml_data_in_raw())
def load_train_param(cfg_path):
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
train_json_path = os.path.join(data_path, cfg_path).replace("\\", "/")
json_data = load_json_data_in_fact(train_json_path)
bs = json_data["train"]["batch_size"]
nc = json_data["train"].get("keep_ckpts", 5)
li = json_data["train"]["log_interval"]
ei = json_data["train"]["eval_interval"]
ep = json_data["train"]["epochs"]
lr = json_data["train"]["learning_rate"]
ver = json_data["version"]
msg = f"加载训练配置文件: {train_json_path}"
logger.info(msg)
return (
gr.Textbox(value=msg),
gr.Code(label=train_json_path, value=load_yaml_data_in_raw(train_json_path)),
gr.Slider(value=bs),
gr.Slider(value=nc),
gr.Slider(value=li),
gr.Slider(value=ei),
gr.Slider(value=ep),
gr.Slider(value=lr),
gr.Dropdown(value=ver),
)
def write_yaml_data_in_fact(yml, yml_path=yml_config):
with open(yml_path, "w", encoding="utf-8") as file:
yaml.safe_dump(yml, file, allow_unicode=True)
# data = file.read()
return yml
def write_json_data_in_fact(json_path, json_data):
with open(json_path, "w", encoding="utf-8") as file:
json.dump(json_data, file, ensure_ascii=False, indent=2)
def check_if_exists_model(paths: list[str]):
check_results = {
path: os.path.exists(path) and os.path.isfile(path) for path in paths
}
val = [path for path, exists in check_results.items() if exists]
return val
def check_bert_models():
return gr.CheckboxGroup(value=check_if_exists_model(bert_model_paths))
def check_emo_models():
return gr.CheckboxGroup(value=check_if_exists_model(emo_model_paths))
def check_base_models():
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
models_dir = yml["train_ms"]["model"]
model_paths = [
os.path.join(data_path, models_dir, p).replace("\\", "/")
for p in train_base_model_paths
]
return gr.CheckboxGroup(
label="检测底模状态",
info="最好去下载底模进行训练",
choices=model_paths,
value=check_if_exists_model(model_paths),
interactive=False,
)
def modify_data_path(data_path):
yml = load_yaml_data_in_fact()
yml["dataset_path"] = data_path
write_yaml_data_in_fact(yml)
txt_box = gr.Textbox(value=data_path)
return (
gr.Dropdown(value=data_path),
txt_box,
txt_box,
txt_box,
gr.Code(value=load_yaml_data_in_raw()),
check_base_models(),
)
def modify_preprocess_param(trans_path, cfg_path, val_per_lang, max_val_total):
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
yml["preprocess_text"]["transcription_path"] = trans_path
yml["preprocess_text"]["config_path"] = cfg_path
yml["preprocess_text"]["val_per_lang"] = val_per_lang
yml["preprocess_text"]["max_val_total"] = max_val_total
write_yaml_data_in_fact(yml)
whole_path = os.path.join(data_path, cfg_path).replace("\\", "/")
logger.info("预处理配置: ", whole_path)
if not os.path.exists(whole_path):
os.makedirs(os.path.dirname(whole_path), exist_ok=True)
shutil.copy(default_config_path, os.path.dirname(whole_path))
return gr.Dropdown(value=trans_path), gr.Code(value=load_yaml_data_in_raw())
def modify_resample_path(in_dir, out_dir, sr):
yml = load_yaml_data_in_fact()
yml["resample"]["in_dir"] = in_dir
yml["resample"]["out_dir"] = out_dir
yml["resample"]["sampling_rate"] = int(sr)
write_yaml_data_in_fact(yml)
msg = f"重采样参数已更改: [{in_dir}, {out_dir}, {sr}]\n"
logger.info(msg)
return (
gr.Textbox(value=in_dir),
gr.Textbox(value=out_dir),
gr.Textbox(value=msg),
gr.Dropdown(value=sr),
gr.Code(value=load_yaml_data_in_raw()),
)
def modify_bert_config(cfg_path, nps, dev, multi):
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
yml["bert_gen"]["config_path"] = cfg_path
yml["bert_gen"]["num_processes"] = int(nps)
yml["bert_gen"]["device"] = dev
yml["bert_gen"]["use_multi_device"] = multi
write_yaml_data_in_fact(yml)
whole_path = os.path.join(data_path, cfg_path).replace("\\", "/")
logger.info("bert配置路径: ", whole_path)
if not os.path.exists(whole_path):
os.makedirs(os.path.dirname(whole_path), exist_ok=True)
shutil.copy(default_config_path, os.path.dirname(whole_path))
return (
gr.Textbox(value=cfg_path),
gr.Slider(value=int(nps)),
gr.Dropdown(value=dev),
gr.Radio(value=multi),
gr.Code(value=load_yaml_data_in_raw()),
)
def modify_train_path(model, cfg_path):
yml = load_yaml_data_in_fact()
yml["train_ms"]["config_path"] = cfg_path
yml["train_ms"]["model"] = model
write_yaml_data_in_fact(yml)
logger.info(f"训练配置文件路径: {cfg_path}\n")
logger.info(f"训练模型文件夹路径: {model}")
return (
gr.Textbox(value=model),
gr.Textbox(value=cfg_path),
gr.Code(value=load_yaml_data_in_raw()),
check_base_models(),
)
def modify_train_param(bs, nc, li, ei, ep, lr, ver):
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
cfg_path = yml["train_ms"]["config_path"]
ok = False
whole_path = os.path.join(data_path, cfg_path).replace("\\", "/")
logger.info("config_path: ", whole_path)
if not os.path.exists(whole_path):
os.makedirs(os.path.dirname(whole_path), exist_ok=True)
shutil.copy(default_config_path, os.path.dirname(whole_path))
if os.path.exists(whole_path) and os.path.isfile(whole_path):
ok = True
with open(whole_path, "r", encoding="utf-8") as file:
json_data = json.load(file)
json_data["train"]["batch_size"] = bs
json_data["train"]["keep_ckpts"] = nc
json_data["train"]["log_interval"] = li
json_data["train"]["eval_interval"] = ei
json_data["train"]["epochs"] = ep
json_data["train"]["learning_rate"] = lr
json_data["version"] = ver
with open(whole_path, "w", encoding="utf-8") as file:
json.dump(json_data, file, ensure_ascii=False, indent=2)
msg = f"成功更改训练参数! [{bs},{nc},{li},{ei},{ep},{lr}]"
logger.info(msg)
else:
msg = f"打开训练配置文件时出现错误: {whole_path}\n" f"该文件不存在或损坏,现在打开默认配置文件"
logger.error(msg)
return gr.Textbox(value=msg), gr.Code(
label=whole_path if ok else default_config_path,
value=load_json_data_in_raw(whole_path)
if ok
else load_json_data_in_raw(default_config_path),
)
def modify_infer_param(model_path, config_path, port, share, debug, ver):
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
yml["webui"]["model"] = os.path.relpath(model_path, start=data_path)
yml["webui"]["config_path"] = os.path.relpath(config_path, start=data_path)
port = int(port)
port = port if 0 <= port <= 65535 else 10086
yml["webui"]["port"] = port
yml["webui"]["share"] = share
yml["webui"]["debug"] = debug
write_yaml_data_in_fact(yml)
json_data = load_json_data_in_fact(config_path)
json_data["version"] = ver
write_json_data_in_fact(config_path, json_data)
msg = f"修改推理配置文件成功: [{model_path}, {config_path}, {port}, {ver}]"
logger.info(msg)
return (
gr.Textbox(value=msg),
gr.Code(value=load_yaml_data_in_raw()),
gr.Code(
label=config_path,
value=load_json_data_in_raw(config_path)
if os.path.exists(config_path)
else load_json_data_in_raw(default_config_path),
),
)
def get_status():
"""获取电脑运行状态"""
cpu_percent = psutil.cpu_percent(interval=1)
memory_info = psutil.virtual_memory()
memory_total = memory_info.total
memory_available = memory_info.available
memory_used = memory_info.used
memory_percent = memory_info.percent
gpuInfo = []
devices = ["cpu"]
for i in range(torch.cuda.device_count()):
devices.append(f"cuda:{i}")
if torch.cuda.device_count() > 0:
gpus = GPUtil.getGPUs()
for gpu in gpus:
gpuInfo.append(
{
"GPU编号": gpu.id,
"GPU负载": f"{gpu.load} %",
"专用GPU内存": {
"总内存": f"{gpu.memoryTotal} MB",
"已使用": f"{gpu.memoryUsed} MB",
"空闲": f"{gpu.memoryFree} MB",
},
}
)
status_data = {
"devices": devices,
"CPU占用率": f"{cpu_percent} %",
"总内存": f"{memory_total // (1024 * 1024)} MB",
"可用内存": f"{memory_available // (1024 * 1024)} MB",
"已使用内存": f"{memory_used // (1024 * 1024)} MB",
"百分数": f"{memory_percent} %",
"gpu信息": gpuInfo,
}
formatted_json_data = json.dumps(status_data, ensure_ascii=False, indent=2)
logger.info(formatted_json_data)
return str(formatted_json_data)
def get_gpu_status():
return gr.Code(value=get_status())
def list_infer_models():
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
inf_models, json_files = [], []
for root, dirs, files in os.walk(data_path):
for file in files:
filepath = os.path.join(root, file).replace("\\", "/")
if file.startswith("G_") and file.lower().endswith(".pth"):
inf_models.append(filepath)
elif file.lower().endswith(".json"):
json_files.append(filepath)
logger.info("找到推理模型文件: " + str(inf_models))
logger.info("找到推理配置文件: " + str(json_files))
return gr.Dropdown(choices=inf_models), gr.Dropdown(choices=json_files)
def do_resample(nps):
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
in_dir = yml["resample"]["in_dir"]
comp_in_dir = os.path.join(os.path.abspath(data_path), in_dir).replace("\\", "/")
logger.info(f"\n重采样路径: {comp_in_dir}")
cmd = f"python resample.py --processes {nps}"
logger.info(cmd)
subprocess.run(cmd, shell=True)
return gr.Textbox(value="重采样完成!")
def do_transcript(lang, workers):
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
in_dir = yml["resample"]["in_dir"]
comp_in_dir = os.path.join(os.path.abspath(data_path), in_dir).replace("\\", "/")
logger.info(f"\n转写文件夹路径: {comp_in_dir}")
cmd = f'python asr_transcript.py -f "{comp_in_dir}" -l {lang} -w {workers}'
logger.info(cmd)
subprocess.run(cmd, shell=True)
return gr.Textbox(value=f"\n转写文件夹路径: {comp_in_dir}\n转写到.lab完成!")
def do_extract(raw_path, lang, unclean, char_name):
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
lab_path = os.path.join(os.path.abspath(data_path), raw_path).replace("\\", "/")
unclean_path = os.path.join(
data_path, os.path.splitext(unclean)[0] + ".txt"
).replace("\\", "/")
logger.info(f"\n提取转写文本路径: {lab_path}")
lab_ok = False
for root, _, files in os.walk(lab_path):
for f_name in files:
if str(f_name).lower().endswith(".lab"):
lab_ok = True
break
if lab_ok:
break
if os.path.exists(lab_path) and os.path.isdir(lab_path):
if lab_ok:
cmd = f'python extract_list.py -f "{lab_path}" -l {lang} -n "{char_name}" -o "{unclean_path}"'
logger.info(cmd)
subprocess.run(cmd, shell=True)
msg = f"提取完成!生成如下文件: {unclean_path}"
logger.info(msg)
else:
msg = "未找到提取转写文本路径下的.lab文件!"
logger.warning(msg)
else:
msg = "路径未选择正确!"
logger.error(msg)
return gr.Textbox(value=msg)
def do_clean_list(ban_chars, unclean, clean):
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
unclean_path = os.path.join(data_path, unclean)
clean_path = os.path.join(data_path, clean)
if os.path.exists(unclean_path) and os.path.isfile(unclean_path):
cmd = f'python clean_list.py -c "{ban_chars}" -i "{unclean_path}" -o "{clean_path}"'
logger.info(cmd)
subprocess.run(cmd, shell=True)
msg = "清洗标注文本完成!"
logger.info(msg)
else:
msg = "未找到可清洗标注文本,请到2.2节重新生成!"
logger.warning(msg)
return gr.Textbox(value=msg)
def do_preprocess_text():
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
trans_path = yml["preprocess_text"]["transcription_path"]
comp_trans_path = os.path.join(os.path.abspath(data_path), trans_path).replace(
"\\", "/"
)
logger.info(f"\n清洗后标注文本文件路径: {comp_trans_path}")
if os.path.exists(comp_trans_path) and os.path.isfile(comp_trans_path):
cmd = "python preprocess_text.py"
logger.info(cmd)
subprocess.run(cmd, shell=True)
msg = "文本预处理完成!"
else:
msg = "\n清洗后标注文本文件不存在或失效!"
logger.info(msg)
return gr.Textbox(value=msg)
def do_bert_gen():
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
train_list_path = yml["preprocess_text"]["train_path"]
val_list_path = yml["preprocess_text"]["val_path"]
comp_t_path = os.path.join(os.path.abspath(data_path), train_list_path).replace(
"\\", "/"
)
comp_v_path = os.path.join(os.path.abspath(data_path), val_list_path).replace(
"\\", "/"
)
if os.path.exists(comp_t_path) and os.path.isfile(comp_t_path):
subprocess.run("python bert_gen.py", shell=True)
msg = "bert文件生成完成!"
logger.info(msg)
else:
msg = f"未找到训练集和验证集文本!\ntrain: {comp_t_path}\nval:{comp_v_path}"
logger.error(msg)
return gr.Textbox(value=msg)
def modify_emo_gen(emo_cfg, emo_nps, emo_device):
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
yml["emo_gen"]["config_path"] = emo_cfg
yml["emo_gen"]["num_processes"] = emo_nps
yml["emo_gen"]["device"] = emo_device
write_yaml_data_in_fact(yml)
comp_emo_cfg = os.path.join(os.path.abspath(data_path), emo_cfg).replace("\\", "/")
if not os.path.exists(comp_emo_cfg):
os.makedirs(os.path.dirname(comp_emo_cfg), exist_ok=True)
shutil.copy(default_config_path, os.path.dirname(comp_emo_cfg))
msg = f"修改emo配置参数: [配置路径:{comp_emo_cfg}, 处理数:{emo_nps}, 设备:{emo_device}]"
logger.info(msg)
return gr.Textbox(value=msg), gr.Code(value=load_yaml_data_in_raw())
def do_emo_gen():
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
emo_config_path = yml["emo_gen"]["config_path"]
comp_emo_path = os.path.join(os.path.abspath(data_path), emo_config_path).replace(
"\\", "/"
)
if os.path.exists(comp_emo_path) and os.path.isfile(comp_emo_path):
subprocess.run("python emo_gen.py", shell=True)
msg = "emo.npy文件生成完成!"
logger.info(msg)
else:
msg = f"选定路径下未找到配置文件!\n需要的config路径 : {comp_emo_path}"
logger.error(msg)
return gr.Textbox(value=msg)
def do_clap_gen():
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
train_list_path = yml["preprocess_text"]["train_path"]
val_list_path = yml["preprocess_text"]["val_path"]
comp_t_path = os.path.join(os.path.abspath(data_path), train_list_path).replace(
"\\", "/"
)
comp_v_path = os.path.join(os.path.abspath(data_path), val_list_path).replace(
"\\", "/"
)
msg = f"确保生成了train.list和val.list在对应目录下(由.list通过预处理得到)"
logger.warning(msg)
msg = f"train: {comp_t_path}"
logger.warning(msg)
msg = f"val: {comp_v_path}"
logger.warning(msg)
if os.path.exists(comp_t_path) and os.path.isfile(comp_t_path):
subprocess.Popen("python clap_gen.py", shell=True)
msg = "clap文件生成完成!"
logger.info(msg)
else:
msg = f"未找到训练集和验证集文本!\ntrain: {comp_t_path}\nval:{comp_v_path}"
logger.error(msg)
return gr.Textbox(value=msg)
def do_my_train():
yml = load_yaml_data_in_fact()
n_gpus = torch.cuda.device_count()
# subprocess.run(f'python train_ms.py', shell=True)
if os.path.exists(r"..\vits\python.exe") and os.path.isfile(r"..\vits\python.exe"):
cmd = (
r"..\vits\python ..\vits\Scripts\torchrun.exe "
f"--nproc_per_node={n_gpus} train_ms.py"
)
else:
cmd = f"torchrun --nproc_per_node={n_gpus} train_ms.py"
subprocess.Popen(cmd, shell=True)
train_port = yml["train_ms"]["env"]["MASTER_PORT"]
train_addr = yml["train_ms"]["env"]["MASTER_ADDR"]
url = f"env://{train_addr}:{train_port}"
msg = f"训练开始!\nMASTER_URL: {url}\n使用gpu数:{n_gpus}\n推荐按下终止训练按钮来结束!"
logger.info(msg)
return gr.Textbox(value=msg)
def do_tensorboard():
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
train_model_dir = yml["train_ms"]["model"]
whole_dir = os.path.join(data_path, train_model_dir).replace("\\", "/")
if os.path.exists(r"..\vits\python.exe") and os.path.isfile(r"..\vits\python.exe"):
first_cmd = r"..\vits\python ..\vits\Scripts\tensorboard.exe "
else:
first_cmd = "tensorboard "
tb_cmd = (
first_cmd + f"--logdir={whole_dir} "
f"--port={11451} "
f'--window_title="训练情况一览" '
f"--reload_interval={120}"
)
subprocess.Popen(tb_cmd, shell=True)
url = f"http://localhost:{11451}"
webbrowser.open(url=url)
msg = tb_cmd + "\n" + url
logger.info(msg)
return gr.Textbox(value=msg)
def do_webui_infer():
yml = load_yaml_data_in_fact()
data_path = yml["dataset_path"]
model_path = yml["webui"]["model"]
config_path = yml["webui"]["config_path"]
comp_m_path = os.path.join(os.path.abspath(data_path), model_path)
comp_c_path = os.path.join(os.path.abspath(data_path), config_path)
if os.path.exists(comp_c_path) and os.path.exists(comp_m_path):
webui_port = yml["webui"]["port"]
subprocess.Popen("python webui.py", shell=True)
url = f"http://localhost:{webui_port} | http://127.0.0.1:{webui_port}"
msg = f"推理端已开启, 到控制台中复制网址打开页面\n{url}\n选择的模型:{model_path}"
logger.info(msg)
else:
msg = f"未找到有效的模型或配置文件!\n模型路径:{comp_m_path}\n配置路径:{comp_c_path}"
logger.error(msg)
return gr.Textbox(value=msg)
def compress_model(cfg_path, in_path, out_path):
subprocess.Popen(
"python compress_model.py" f" -c {cfg_path}" f" -i {in_path}", shell=True
)
msg = "到控制台中查看压缩结果"
logger.info(msg)
return gr.Textbox(value=msg)
def kill_specific_process_linux(cmd):
try:
output = subprocess.check_output(["pgrep", "-f", cmd], text=True)
pids = output.strip().split("\n")
for pid in pids:
if pid:
logger.critical(f"终止进程: {pid}")
os.kill(int(pid), signal.SIGTERM)
# os.kill(int(pid), signal.SIGKILL)
except subprocess.CalledProcessError:
logger.error("没有找到匹配的进程。")
except Exception as e:
logger.error(f"发生错误: {e}")
def kill_specific_process_windows(cmd):
try:
# 使用tasklist和findstr来找到匹配特定命令行模式的进程
output = subprocess.check_output(
f'tasklist /FO CSV /V | findstr /C:"{cmd}"', shell=True, text=True
)
lines = output.strip().split("\n")
for line in lines:
if line:
pid = line.split(",")[1].strip('"')
logger.critical(f"终止进程: {pid}")
subprocess.run(["taskkill", "/PID", pid, "/F"], shell=True) # 强制终止
except subprocess.CalledProcessError:
logger.error(f"没有找到匹配的{cmd}进程。")
except Exception as e:
logger.error(f"发生错误: {e}")
def stop_train_ms():
yml = load_yaml_data_in_fact()
train_port = yml["train_ms"]["env"]["MASTER_PORT"]
train_addr = yml["train_ms"]["env"]["MASTER_ADDR"]
if platform.system() == "Windows":
kill_specific_process_windows("torchrun")
else:
kill_specific_process_linux("torchrun")
url = f"env://{train_addr}:{train_port}"
msg = f"训练结束!\nMASTER_URL: {url}"
logger.critical(msg)
return gr.Textbox(value=msg)
def stop_tensorboard():
if platform.system() == "Windows":
kill_specific_process_windows("tensorboard")
else:
kill_specific_process_linux("tensorboard")
msg = "关闭tensorboard!\n"
logger.critical(msg)
return gr.Textbox(value=msg)
def stop_webui_infer():
yml = load_yaml_data_in_fact()
webui_port = yml["webui"]["port"]
if platform.system() == "Linux":
kill_specific_process_linux("python webui.py")
else:
kill_specific_process_windows("python webui.py")
msg = f"尝试终止推理进程,请到控制台查看情况\nport={webui_port}"
logger.critical(msg)
return gr.Textbox(value=msg)
def get_dataset_folders() -> str:
os.makedirs('Data', exist_ok=True)
glob_list = glob.glob('Data/**/', recursive=False)
glob_str = '{' + ",".join(glob_list).replace('\\', '/') + '}'
logger.info(glob_str)
return glob_str
def do_all_process(selected_folders):
msg = "\n".join(selected_folders)
logger.info(msg)
return gr.Textbox(value=msg)
def update_dataset_folders():
return gr.FileExplorer(glob=get_dataset_folders())
def fn_create_folder(folder_name):
new_path = os.path.join(init_yml['dataset_path'], folder_name)
os.makedirs(os.path.join(new_path, "audios/raw"), exist_ok=True)
os.makedirs(os.path.join(new_path, "filelists"), exist_ok=True)
os.makedirs(os.path.join(new_path, "models"), exist_ok=True)
msg = "创建了新的文件夹: " + new_path
return gr.Textbox(value=msg), update_dataset_folders()
def fn_delete_folder(selected_folders):
for path in selected_folders:
try:
shutil.rmtree(path)
except Exception as e:
logger.error("删除文件夹发生错误:" + str(e))
msg = "删除了以下文件夹及其子目录\n" + "\n".join(selected_folders)
logger.info(msg)
return gr.Textbox(value=msg), update_dataset_folders()
if __name__ == "__main__":
init_yml = load_yaml_data_in_fact()
with gr.Blocks(
title="Bert-VITS-2-v2.0-管理器",
theme=gr.themes.Soft(),
css=os.path.abspath("./css/custom.css"),
) as app:
with gr.Row():
with gr.Tabs():
with gr.TabItem("首页"):
gr.Markdown(
"""
## Bert-VITS2-v2.0 可视化界面
#### Copyright/Powered by 怕吃辣滴辣子酱
#### 许可: [AGPL 3.0 Licence](https://github.com/AnyaCoder/Bert-VITS2/blob/master/LICENSE)
#### 请订阅我的频道:
1. Bilibili: [spicysama](https://space.bilibili.com/47278440)
2. github: [AnyaCoder](https://github.com/AnyaCoder)
### 严禁将此项目用于一切违反《中华人民共和国宪法》,《中华人民共和国刑法》,《中华人民共和国治安管理处罚法》和《中华人民共和国民法典》之用途。
### 严禁用于任何政治相关用途。
## References
+ [anyvoiceai/MassTTS](https://github.com/anyvoiceai/MassTTS)
+ [jaywalnut310/vits](https://github.com/jaywalnut310/vits)
+ [p0p4k/vits2_pytorch](https://github.com/p0p4k/vits2_pytorch)
+ [svc-develop-team/so-vits-svc](https://github.com/svc-develop-team/so-vits-svc)
+ [PaddlePaddle/PaddleSpeech](https://github.com/PaddlePaddle/PaddleSpeech)
## 感谢所有贡献者作出的努力
<a href="https://github.com/AnyaCoder/Bert-VITS2/graphs/contributors">
<img src="https://contrib.rocks/image?repo=AnyaCoder/Bert-VITS2" />
</a>
Made with [contrib.rocks](https://contrib.rocks).
"""
)
with gr.TabItem("填入openi token"):
with gr.Row():
gr.Markdown(
"""
### 为了后续步骤中能够方便地自动下载模型(bert/emo_gen阶段),强烈推荐完成这一步骤!
### 去openi官网注册并登录后:
### [点击此处跳转到openi官网](https://openi.pcl.ac.cn/)
### , 点击右上角`个人头像`-> `设置` -> `应用`, 生成令牌(token)
### 复制token, 粘贴到下面的框框, 点击确认
"""
)
with gr.Row():
openi_token_box = gr.Textbox(
label="填入openi token", value=init_yml["openi_token"]
)
with gr.Row():
openi_token_btn = gr.Button(value="确认填写", variant="primary")
with gr.Row():
openi_token_status = gr.Textbox(label="状态信息")
with gr.TabItem("模型检测"):
CheckboxGroup_bert_models = gr.CheckboxGroup(
label="检测bert模型状态",
info="对应文件夹下必须有对应的模型文件(填入openi token后,则后续步骤中会自动下载)",
choices=bert_model_paths,
value=check_if_exists_model(bert_model_paths),
interactive=False,
)
check_pth_btn1 = gr.Button(value="检查bert模型状态")
CheckboxGroup_emo_models = gr.CheckboxGroup(
label="检测emo模型状态",
info="对应文件夹下必须有对应的模型文件",
choices=emo_model_paths,
value=check_if_exists_model(emo_model_paths),
interactive=False,
)
check_pth_btn2 = gr.Button(value="检查emo模型状态")
with gr.TabItem("数据处理"):
with gr.Row():
dropdown_data_path = gr.Dropdown(
label="选择数据集存放路径 (右侧的dataset_path)",
info="详细说明可见右侧带注释的yaml文件",
interactive=True,
allow_custom_value=True,
choices=[init_yml["dataset_path"]],
value=init_yml["dataset_path"],
)
with gr.Row():
data_path_btn = gr.Button(value="确认更改存放路径", variant="primary")
with gr.Tabs():
with gr.TabItem("1. 音频重采样"):
with gr.Row():
resample_in_box = gr.Textbox(
label="输入音频文件夹in_dir",
value=init_yml["resample"]["in_dir"],
lines=1,
interactive=True,
)
resample_out_box = gr.Textbox(
label="输出音频文件夹out_dir",
lines=1,
value=init_yml["resample"]["out_dir"],
interactive=True,
)
with gr.Row():
dropdown_resample_sr = gr.Dropdown(
label="输出采样率(Hz)",
choices=["16000", "22050", "44100", "48000"],
value="44100",
)
slider_resample_nps = gr.Slider(
label="采样用的CPU核心数",
minimum=1,
maximum=64,
step=1,
value=2,
)
with gr.Row():
resample_config_btn = gr.Button(
value="确认重采样配置",
variant="secondary",
)
resample_btn = gr.Button(
value="1. 音频重采样",
variant="primary",
)
with gr.Row():
resample_status = gr.Textbox(
label="重采样结果",
placeholder="执行重采样后可查看",
lines=3,
interactive=False,
)
with gr.TabItem("2. 转写文本生成"):
with gr.Row():
dropdown_lang = gr.Dropdown(
label="选择语言",
info="ZH中文,JP日语,EN英语",
choices=["ZH", "JP", "EN"],
value="ZH",
)
slider_transcribe = gr.Slider(
label="转写进程数",
info="目的路径与前一节一致\n 重采样的输入路径",
minimum=1,
maximum=10,
step=1,
value=1,
interactive=True,
)
clean_txt_box = gr.Textbox(
label="非法字符集",
info="在此文本框内出现的字符都会被整行删除",
lines=1,
value="{}<>",
interactive=True,
)
with gr.Row():
unclean_box = gr.Textbox(
label="未清洗的文本",
info="仅将.lab提取到这个文件里, 请保持txt格式",
lines=1,
value=os.path.splitext(
init_yml["preprocess_text"][
"transcription_path"
]
)[0]
+ ".txt",
interactive=True,
)
clean_box = gr.Textbox(
label="已清洗的文本",
info="将未清洗的文本做去除非法字符集处理后的文本",
lines=1,
value=init_yml["preprocess_text"][
"transcription_path"
],
interactive=True,
)
char_name_box = gr.Textbox(
label="输入角色名",
info="区分说话人用",
lines=1,
placeholder="填入一个名称",
interactive=True,
)
with gr.Row():
transcribe_btn = gr.Button(
value="2.1 转写文本", interactive=True
)
extract_list_btn = gr.Button(
value="2.2 合成filelist",
)
clean_trans_btn = gr.Button(value="2.3 清洗标注")
with gr.Row():
preprocess_status_box = gr.Textbox(label="标注状态")
with gr.TabItem("3. 文本预处理"):
with gr.Row():
slider_val_per_spk = gr.Slider(
label="每种语言的验证集条数",
info="TensorBoard里的每种语言eval音频展示条目",
minimum=1,
maximum=20,
step=1,
value=init_yml["preprocess_text"]["val_per_lang"],
)
slider_max_val_total = gr.Slider(
label="验证集最大条数",
info="多于此项的会被截断并放到训练集中",
minimum=8,
maximum=160,
step=8,
value=init_yml["preprocess_text"]["max_val_total"],
)
with gr.Row():
dropdown_filelist_path = gr.Dropdown(
interactive=True,
label="输入filelist路径",
allow_custom_value=True,
choices=[
init_yml["preprocess_text"][
"transcription_path"
]
],
value=init_yml["preprocess_text"][
"transcription_path"
],
)
preprocess_config_box = gr.Textbox(
label="预处理配置文件路径",
value=init_yml["preprocess_text"]["config_path"],
)
with gr.Row():
preprocess_config_btn = gr.Button(value="更新预处理配置文件")
preprocess_text_btn = gr.Button(
value="标注文本预处理", variant="primary"
)
with gr.Row():
label_status = gr.Textbox(label="转写状态")
with gr.TabItem("4. bert_gen"):
with gr.Row():
bert_dataset_box = gr.Textbox(
label="数据集存放路径",
text_align="right",
value=str(init_yml["dataset_path"]).rstrip("/"),
lines=1,
interactive=False,
scale=10,
)
gr.Markdown(
"""
<br></br>
## +
"""
)
bert_config_box = gr.Textbox(
label="bert_gen配置文件路径",
text_align="left",
value=init_yml["bert_gen"]["config_path"],
lines=1,
interactive=True,
scale=10,
)
with gr.Row():
slider_bert_nps = gr.Slider(
label="bert_gen并行处理数",
minimum=1,
maximum=12,
step=1,
value=init_yml["bert_gen"]["num_processes"],
)
dropdown_bert_dev = gr.Dropdown(
label="bert_gen处理设备",
choices=["cuda", "cpu"],
value=init_yml["bert_gen"]["device"],
)
radio_bert_multi = gr.Radio(
label="使用多卡推理", choices=[True, False], value=False
)
with gr.Row():
bert_config_btn = gr.Button(value="确认更改bert配置项")
bert_gen_btn = gr.Button(
value="Go! Bert Gen!", variant="primary"
)
with gr.Row():
bert_status = gr.Textbox(label="状态信息")
with gr.TabItem("5. clap_gen"):
with gr.Row():
gr.Markdown("""
### 和第4步差不多,点就完了
### 作用:提取情绪特征,生成`.emo.npy`文件训练使用
""")
with gr.Row():
slider_clap_nps = gr.Slider(