forked from traderpedroso/thesisbot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tune_model.py
234 lines (157 loc) · 6.34 KB
/
tune_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import numpy as np
import pandas as pd
import random
from collections import deque
import tensorflow.compat.v2 as tf
tf.enable_v2_behavior()
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, LSTM, BatchNormalization, GRU, Bidirectional
from tensorflow.keras.optimizers import SGD, RMSprop, Adam, Adagrad
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard
import time
import os
from ejtrader import iq_login, iq_get_data
from settings import seq_len, predict_period, LEARNING_RATE, EPOCHS, BATCH_SIZE, EARLYSTOP, VALIDATION_TRAIN, ismac
from kerastuner.tuners import RandomSearch
if ismac:
from tensorflow.python.compiler.mlcompute import mlcompute
mlcompute.set_mlc_device(device_name='cpu')
from indicator import Indicators
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
try:
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except Exception as e:
# Memory growth must be set before GPUs have been initialized
print(e)
def classify(current,future):
if float(future) > float(current):
return 1
else:
return 0
def preprocess_df(df):
df = df.drop("future", 1)
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
indexes = df.index
df_scaled = scaler.fit_transform(df)
df = pd.DataFrame(df_scaled,index = indexes)
sequential_data = []
prev_days = deque(maxlen=seq_len)
for i in df.values:
prev_days.append([n for n in i[:-1]])
if len(prev_days) == seq_len:
sequential_data.append([np.array(prev_days), i[-1]])
random.shuffle(sequential_data)
buys = []
sells = []
for seq, target in sequential_data:
if target == 0:
sells.append([seq, target])
elif target == 1:
buys.append([seq, target])
random.shuffle(buys)
random.shuffle(sells)
lower = min(len(buys), len(sells))
buys = buys[:lower]
sells = sells[:lower]
sequential_data = buys+sells
random.shuffle(sequential_data)
X = []
y = []
for seq, target in sequential_data:
X.append(seq)
y.append(target)
return np.array(X), y
def train_data(iq,symbol,symbols,timeframe):
df = iq_get_data(iq,symbol,symbols,timeframe)
# df = pd.read_csv("EURUSD.csv")
df = Indicators(df)
df.isnull().sum().sum() # there are no nans
df.fillna(method="ffill", inplace=True)
df = df.loc[~df.index.duplicated(keep = 'first')]
df['future'] = df["GOAL"].shift(-predict_period)
df = df.dropna()
dataset = df.fillna(method="ffill")
dataset = dataset.dropna()
dataset.sort_index(inplace = True)
main_df = dataset
main_df.fillna(method="ffill", inplace=True)
main_df.dropna(inplace=True)
main_df['target'] = list(map(classify, main_df['GOAL'], main_df['future']))
main_df.dropna(inplace=True)
main_df['target'].value_counts()
main_df.dropna(inplace=True)
main_df = main_df.astype('float32')
if VALIDATION_TRAIN:
times = sorted(main_df.index.values)
last_5pct = sorted(main_df.index.values)[-int(0.2*len(times))]
validation_main_df = main_df[(main_df.index >= last_5pct)]
main_df = main_df[(main_df.index < last_5pct)]
train_x, train_y = preprocess_df(main_df)
validation_x, validation_y = preprocess_df(validation_main_df)
print(f"train data: {len(train_x)} validation: {len(validation_x)}")
print(f"sells: {train_y.count(0)}, buys: {train_y.count(1)}")
print(f"VALIDATION sells: {validation_y.count(0)}, buys : {validation_y.count(1)}")
train_y = np.asarray(train_y)
validation_y = np.asarray(validation_y)
else:
train_x, train_y = preprocess_df(main_df)
print(f"train data: {len(train_x)}")
print(f"sells: {train_y.count(0)}, buys: {train_y.count(1)}")
train_y = np.asarray(train_y)
def build_model(hp):
model = Sequential()
model.add(LSTM(hp.Int('units',
min_value=10,
max_value=70,
step=1), input_shape=(train_x.shape[1:]), return_sequences=True))
model.add(Dropout(0.1))
model.add(BatchNormalization())
model.add(LSTM(units=hp.Int('units',
min_value=10,
max_value=70,
step=1), return_sequences=True))
model.add(Dropout(0.2))
model.add(BatchNormalization())
model.add(LSTM(units=hp.Int('units',
min_value=10,
max_value=70,
step=1)))
model.add(Dropout(0.2))
model.add(BatchNormalization())
model.add(Dense(hp.Int('units',
min_value=10,
max_value=70,
step=1),
activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(2, activation='softmax'))
# Compile model
model.compile(
optimizer=tf.keras.optimizers.Adam(
hp.Choice('learning_rate',
values=[1e-2,1e-3])),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model
tuner = RandomSearch(
build_model,
objective='val_accuracy',
max_trials=200,
executions_per_trial=1,
directory='TUN',
project_name='IQOTC')
tuner.search_space_summary()
tuner.search(train_x,train_y,
epochs=EPOCHS,
validation_data=(validation_x, validation_y))
# model = tuner.get_best_models(num_models=2)
tuner.results_summary()