forked from EPFLiGHT/predicting-poverty-through-time
-
Notifications
You must be signed in to change notification settings - Fork 0
/
estimator_util.py
309 lines (248 loc) · 9.16 KB
/
estimator_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
"""
Functions of estimation notebooks.
"""
from scipy.stats import pearsonr
from sklearn.linear_model import Ridge
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
import ast
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import string
import world_bank_data as wb
def get_data(lsms_path: str, cnn_path: str, osm_path: str):
"""
Function to load data and merge it
Args:
- lsms_path: Path to lsms file
- cnn_path: Path to cnn feature file
- osm_path: Base path to OSM files
Return:
- pd.Dataframe: features of CNN
- list: features of OSM
"""
lsms = pd.read_csv(lsms_path)
cnn = pd.read_csv(cnn_path, converters={'features': ast.literal_eval})
lsms[lsms.select_dtypes(np.float64).columns] = lsms.select_dtypes(
np.float64).astype(np.float32)
cnn[cnn.select_dtypes(np.float64).columns] = cnn.select_dtypes(
np.float64).astype(np.float32)
cnn_lsms = lsms.merge(cnn, on=["lat", "lon", "year"])
build = pd.read_csv(osm_path + "osm_features/_all_buildings.csv")
pois = pd.read_csv(osm_path + "osm_features/_all_pois.csv")
roads = pd.read_csv(osm_path + "osm_features/_all_road.csv")
build_cols = build.columns[1:]
pois_cols = pois.columns[:-1] # id is last column in my case
roads_cols = roads.columns[1:]
all_cols = list(build_cols) + list(roads_cols) + list(pois_cols)
osm = build.merge(pois, on="id")
osm = osm.merge(roads, on="id")
complete = osm.merge(cnn_lsms, on="id")
return complete, all_cols
def run_ridge(X: np.array, y: np.array, alpha: int = 1000, seed=42):
"""
Run Ridge Regression
Args:
- X (np.array): Features
- y (np.array): Consumption
- alpha (int): param for Ridge Regression
- seed (int): For reproducibility
Return:
- r^2
- predicated y
- model
"""
kf = KFold(n_splits=10, shuffle=True, random_state=seed)
r2 = []
for train_ind, test_ind in kf.split(X, y):
x_train_fold, x_test_fold = X[train_ind], X[test_ind]
y_train_fold, y_test_fold = y[train_ind], y[test_ind]
model = Ridge(alpha)
model.fit(x_train_fold, y_train_fold)
y_predict = model.predict(x_test_fold)
r2.append(pearsonr(y_test_fold, y_predict)[0]**2)
y_hest = model.predict(X)
return np.mean(r2), y_hest, model
def run_ridge_out(X: np.array, y: np.array, X_out: np.array, y_out: np.array, alpha: int = 1000):
"""
Run Ridge Regression with training on X and predictions on X_out
Args:
- X (np.array): Features
- y (np.array): Consumption
- X_out (np.array): Features for evaluation
- y_out (np.array): Consumption for evaluation
- alpha (int): param for Ridge Regression
Return:
- r^2
- predicated y
- model
"""
kf = KFold(n_splits=10, shuffle=True, random_state=1)
r2 = []
for train_ind, test_ind in kf.split(X, y):
x_train_fold, x_test_fold = X[train_ind], X[test_ind]
y_train_fold, y_test_fold = y[train_ind], y[test_ind]
model = Ridge(alpha)
model.fit(x_train_fold, y_train_fold)
y_predict = model.predict(X_out)
r2.append(pearsonr(y_out, y_predict)[0]**2)
y_hest = model.predict(X_out)
return np.mean(r2), y_hest, model
def plot_predictions(y: np.array, yhat: np.array, r2: float, country: str, year: str, n: int, max_y=None, x_label = False):
"""
Util for plot predictions
Args:
- y (np.array): Ground truth
- y_hat (np.array): Predictions
- r2 (float): r2 value of predictions
- country (str): Title (in most cases the country)
- year (str): Year or timespan
- n (int): For letter on plot
- max_y (float): Max consumption
- x_label (bool): Check if label for x axis should be added
Return:
- figure
"""
if max_y is not None:
yhat = yhat[y < max_y]
y = y[y < max_y]
fig = plt.figure(figsize=(5, 8))
plt.scatter(y, yhat, alpha=0.6)
plt.plot(np.unique(y), np.poly1d(
np.polyfit(y, yhat, 1))(np.unique(y)), color='r')
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
plt.xlabel('Observed consumption($/day)', fontsize=14)
if n == 0 or x_label:
plt.ylabel('Predicted consumption($/day)', fontsize=14)
plt.title(fr'$r^2$ {round(r2, 2)}', fontsize=14, loc='left')
plt.suptitle(f'{country} {year}', ha="left", x=0.119, y=0.95, fontsize=18)
plt.grid(alpha=1)
ax.text(-0.1, 1.1, string.ascii_uppercase[n],
size=20, weight='bold', transform=ax.transAxes)
return fig
def get_inflation_perf(country, base, target):
base_infl = wb.get_series("FP.CPI.TOTL", country=country, date=base)[0]
target_infl = wb.get_series("FP.CPI.TOTL", country=country, date=target)[0]
return target_infl / base_infl
def get_recent_features(df: pd.DataFrame, countries: list, osm_cols: list, infl: int = 1, scale_cnn: bool = True, scale_complete: bool = True, log_transform = True):
"""
Return features from most recent survey for a country.
Args
- df (pd.Dataframe): Dataframe with data
- countries (list): Countries for which data is requested
- osm_cols (list): Columns for OSM features
- infl (int): infaltion rate for scaling
- scale_cnn (bool): standard. CNN features
- scale_complete (bool): standard. combined features
- log_transform (bool): Log Transform cons.
Return:
- X (np.array): features
- y (np.array): cons.
"""
X = None
y = None
for country in countries:
tmp_df = df.loc[df.country == country]
years = tmp_df.groupby(["year"]).groups.keys()
year = max(years)
year_df = tmp_df.loc[tmp_df.year == year]
cnn_X = np.array([np.array(x) for x in year_df["features"].values])
if scale_cnn:
cnn_X = StandardScaler().fit_transform(cnn_X)
osm_X = year_df[osm_cols].values
tmp_X = np.hstack((cnn_X, osm_X))
y_ = year_df["cons_pc"].values
if X is None:
X = tmp_X
else:
X = np.vstack((X, tmp_X))
if y is None:
y = y_
else:
y = np.append(y, y_)
if scale_complete:
X = StandardScaler().fit_transform(X)
y /= infl
if log_transform:
y = np.log(y)
return X, y
def get_features(df: pd.DataFrame, countries: list, years: list, osm_cols: list, infl: int = 1, scale_cnn: bool = True, scale_complete: bool = True, log_transform = True):
"""
Return features for a country by given years..
Args
- df (pd.Dataframe): Dataframe with data
- countries (list): Countries for which data is requested
- years (list): Selected years
- osm_cols (list): Columns for OSM features
- infl (int): infaltion rate for scaling
- scale_cnn (bool): standard. CNN features
- scale_complete (bool): standard. combined features
- log_transform (bool): Log Transform cons.
Return:
- X (np.array): features
- y (np.array): cons.
"""
X = None
y = None
for country in countries:
tmp_df = df.loc[df.country == country]
for year in years:
year_df = tmp_df.loc[tmp_df.year == year]
cnn_X = np.array([np.array(x) for x in year_df["features"].values])
if scale_cnn:
cnn_X = StandardScaler().fit_transform(cnn_X)
osm_X = year_df[osm_cols].values
tmp_X = np.hstack((cnn_X, osm_X))
y_ = year_df["cons_pc"].values
if X is None:
X = tmp_X
else:
X = np.vstack((X, tmp_X))
if y is None:
y = y_
else:
y = np.append(y, y_)
if scale_complete:
X = StandardScaler().fit_transform(X)
y /= infl
if log_transform:
y = np.log(y)
return X, y
def get_features_allyears(complete_df, countries, osm_colls):
"""
Return features for a country with all years in dataset. All data is scaled to inflation rate from 2010 on.
Args
- df (pd.Dataframe): Dataframe with data
- countries (list): Countries for which data is requested
- osm_cols (list): Columns for OSM features
Return:
- X (np.array): features
- y (np.array): cons.
"""
X = None
y = None
for country in countries:
tmp_df = complete_df.loc[complete_df.country == country]
years = tmp_df.groupby(["year"]).groups.keys()
for year in years:
year_df = tmp_df.loc[tmp_df.year == year]
cnn_X = np.array([np.array(x) for x in year_df["features"].values])
osm_X = year_df[osm_colls].values
tmp_X = np.hstack((cnn_X, osm_X))
y_ = year_df["cons_pc"].values
inflr = get_inflation_perf(country, 2010, year)
y_ = y_ / inflr
if X is None:
X = tmp_X
else:
X = np.vstack((X, tmp_X))
if y is None:
y = y_
else:
y = np.append(y, y_)
X = StandardScaler().fit_transform(X)
return X, np.log(y)