forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ft_denoise_synthetic.m
155 lines (136 loc) · 5.52 KB
/
ft_denoise_synthetic.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
function [data] = ft_denoise_synthetic(cfg, data)
% FT_DENOISE_SYNTHETIC computes CTF higher-order synthetic gradients for
% preprocessed data and for the corresponding gradiometer definition.
%
% Use as
% [data] = ft_denoise_synthetic(cfg, data)
% where data should come from FT_PREPROCESSING and the configuration should contain
% cfg.gradient = 'none', 'G1BR', 'G2BR' or 'G3BR' specifies the gradiometer
% type to which the data should be changed
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
% cfg.updatesens = 'no' or 'yes' (default = 'yes')
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_PREPROCESSING, FT_DENOISE_PCA, FT_DENOISE_SSP
% Copyright (C) 2004-2022, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'forbidden', {'trial'}); % prevent accidental typos, see issue 1729
cfg = ft_checkconfig(cfg, 'required', {'gradient'});
% set the defaults
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.updatesens = ft_getopt(cfg, 'updatesens', 'yes');
% store the original type of the input data
dtype = ft_datatype(data);
% check if the input data is valid for this function
% this will convert timelocked input data to a raw data representation if needed
data = ft_checkdata(data, 'datatype', 'raw', 'feedback', 'yes', 'hassampleinfo', 'yes');
% check whether it is CTF data
if ~ft_senstype(data, 'ctf')
ft_error('synthetic gradients can only be computed for CTF data');
end
% check whether there are reference channels in the input data
hasref = ~isempty(ft_channelselection('MEGREF', data.label));
if ~hasref
ft_error('synthetic gradients can only be computed when the input data contains reference channels');
end
% select trials of interest
tmpcfg = keepfields(cfg, {'trials', 'showcallinfo', 'trackcallinfo', 'trackusage', 'trackdatainfo', 'trackmeminfo', 'tracktimeinfo'});
data = ft_selectdata(tmpcfg, data);
% restore the provenance information
[cfg, data] = rollback_provenance(cfg, data);
% remember the original channel ordering
labelold = data.label;
% apply the balancing to the MEG data and to the gradiometer definition
current = data.grad.balance.current;
desired = cfg.gradient;
if ~strcmp(current, 'none')
% first undo/invert the previously applied balancing
try
current_montage = data.grad.balance.(current);
catch
ft_error('unknown balancing for input data');
end
fprintf('converting the data from "%s" to "none"\n', current);
data = ft_apply_montage(data, current_montage, 'keepunused', 'yes', 'inverse', 'yes');
if istrue(cfg.updatesens)
fprintf('converting the sensor description from "%s" to "none"\n', current);
data.grad = ft_apply_montage(data.grad, current_montage, 'keepunused', 'yes', 'inverse', 'yes');
data.grad.balance.current = 'none';
end
end % if current
if ~strcmp(desired, 'none')
% then apply the desired balancing
try
desired_montage = data.grad.balance.(desired);
catch
ft_error('unknown balancing for input data');
end
fprintf('converting the data from "none" to "%s"\n', desired);
data = ft_apply_montage(data, desired_montage, 'keepunused', 'yes', 'balancename', desired);
if istrue(cfg.updatesens)
fprintf('converting the sensor description from "none" to "%s"\n', desired);
data.grad = ft_apply_montage(data.grad, desired_montage, 'keepunused', 'yes', 'balancename', desired);
end
end % if desired
% reorder the channels to stay close to the original ordering
[selold, selnew] = match_str(labelold, data.label);
if numel(selnew)==numel(labelold)
for i=1:numel(data.trial)
data.trial{i} = data.trial{i}(selnew,:);
end
data.label = data.label(selnew);
else
ft_warning('channel ordering might have changed');
end
% convert back to input type if necessary
switch dtype
case 'timelock'
data = ft_checkdata(data, 'datatype', 'timelock');
otherwise
% keep the output as it is
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble previous data
ft_postamble provenance data
ft_postamble history data
ft_postamble savevar data