-
Notifications
You must be signed in to change notification settings - Fork 18
/
sentinel.py
executable file
·670 lines (546 loc) · 27.5 KB
/
sentinel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
#!/usr/bin/python
# SENTINEL
# A USB rocket launcher face-tracking solution
# For Linux and Windows
#
# Installation: see README.md
#
# Usage: sentinel.py [options]
#
# Options:
# -h, --help show this help message and exit
# -l ID, --launcher=ID specify VendorID of the missile launcher to use.
# Default: '2123' (dreamcheeky thunder)
# -d, --disarm track faces but do not fire any missiles
# -r, --reset reset the turret position and exit
# --nd, --no-display do not display captured images
# -c NUM, --camera=NUM specify the camera # to use. Default: 0
# -s WIDTHxHEIGHT, --size=WIDTHxHEIGHT
# image dimensions (recommended: 320x240 or 640x480).
# Default: 320x240
# -v, --verbose detailed output, including timing information
import os
import sys
import time
import usb.core
import cv2
import subprocess
import shutil
import math
import threading
from optparse import OptionParser
# globals
FNULL = open(os.devnull, 'w')
# http://stackoverflow.com/questions/4984647/accessing-dict-keys-like-an-attribute-in-python
class AttributeDict(dict):
__getattr__ = dict.__getitem__
__setattr__ = dict.__setitem__
class Launcher(): # a parent class for our low level missile launchers.
#Contains general movement commands which may be overwritten in case of hardware specific tweaks.
# roughly centers the turret at the origin
def center(self, x_origin=0.5, y_origin=0.5):
print 'Centering camera ...'
self.moveToPosition(x_origin,y_origin)
def moveToPosition(self, right_percentage, down_percentage):
self.turretLeft()
time.sleep( self.x_range)
self.turretRight()
time.sleep( right_percentage * self.x_range)
self.turretStop()
self.turretUp()
time.sleep( self.y_range)
self.turretDown()
time.sleep( down_percentage * self.y_range)
self.turretStop()
def moveRelative(self, right_percentage, down_percentage):
if (right_percentage>0):
self.turretRight()
elif(right_percentage<0):
self.turretLeft()
time.sleep( abs(right_percentage) * self.x_range)
self.turretStop()
if (down_percentage>0):
self.turretDown()
elif(down_percentage<0):
self.turretUp()
time.sleep( abs(down_percentage) * self.y_range)
self.turretStop()
# Launcher commands for USB Missile Launcher (VendorID:0x1130 ProductID:0x0202 Tenx Technology, Inc.)
class Launcher1130(Launcher):
# Commands and control messages are derived from
# http://sourceforge.net/projects/usbmissile/ and http://code.google.com/p/pymissile/
# 7 Bytes of Zeros to fill 64 Bit packet (8 Bit for direction/action + 56 Bit of Zeros to fill packet)
cmdFill = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
# Low level launcher driver commands
# this code mostly taken from https://github.com/nmilford/stormLauncher
# with bits from https://github.com/codedance/Retaliation
def __init__(self):
# HID detach for Linux systems...not tested with 0x1130 product
self.dev = usb.core.find(idVendor=0x1130, idProduct=0x0202)
if self.dev is None:
raise ValueError('Missile launcher not found.')
if sys.platform == "linux2":
try:
if self.dev.is_kernel_driver_active(1) is True:
self.dev.detach_kernel_driver(1)
else:
self.dev.detach_kernel_driver(0)
except Exception, e:
pass
self.dev.set_configuration()
self.missile_capacity = 3
#experimentally estimated speed scaling factors
self.y_speed = 0.48
self.x_speed = 0.64
#approximate number of seconds of movement to reach end of range
self.x_range = 7
self.y_range = 3
#directional constants
self.LEFT = 1
self.RIGHT = 2
self.UP = 4
self.DOWN = 8
self.BLANK_data = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08]
self.LEFT_data = [0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08]
self.RIGHT_data = [0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x08, 0x08]
self.UP_data = [0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x08, 0x08]
self.DOWN_data = [0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x08, 0x08]
self.FIRE = [0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x08, 0x08]
self.STOP = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08]
def turretLeft(self):
cmd = self.LEFT_data + self.cmdFill
self.turretMove(cmd)
def turretRight(self):
cmd = self.RIGHT_data + self.cmdFill
self.turretMove(cmd)
def turretUp(self):
cmd = self.UP_data + self.cmdFill
self.turretMove(cmd)
def turretDown(self):
cmd = self.DOWN_data + self.cmdFill
self.turretMove(cmd)
def turretDirection(self, directionCommand):
cmd = self.BLANK_data + self.cmdFill
if (directionCommand & self.LEFT == self.LEFT ):
cmd[1] = 0x1
elif (directionCommand & self.RIGHT == self.RIGHT ):
cmd[2] = 0x1
if (directionCommand & self.UP == self.UP ):
cmd[3] = 0x1
elif (directionCommand & self.DOWN == self.DOWN ):
cmd[4] = 0x1
self.turretMove(cmd)
def turretFire(self):
cmd = self.FIRE + self.cmdFill
self.turretMove(cmd)
def turretStop(self):
cmd = self.STOP + self.cmdFill
self.turretMove(cmd)
def ledOn(self):
# cannot turn on LED. Device has no LED.
pass
def ledOff(self):
# cannot turn off LED. Device has no LED.
pass
# Missile launcher requires two init-packets before the actual command can be sent.
# The init-packets consist of 8 Bit payload, the actual command is 64 Bit payload
def turretMove(self, cmd):
# Two init-packets plus actual command
self.dev.ctrl_transfer(0x21, 0x09, 0x2, 0x01, [ord('U'), ord('S'), ord('B'), ord('C'), 0, 0, 4, 0])
self.dev.ctrl_transfer(0x21, 0x09, 0x2, 0x01, [ord('U'), ord('S'), ord('B'), ord('C'), 0, 64, 2, 0])
self.dev.ctrl_transfer(0x21, 0x09, 0x2, 0x00, cmd)
# Launcher commands for DreamCheeky Thunder (VendorID:0x2123 ProductID:0x1010)
class Launcher2123(Launcher):
# Low level launcher driver commands
# this code mostly taken from https://github.com/nmilford/stormLauncher
# with bits from https://github.com/codedance/Retaliation
def __init__(self):
self.dev = usb.core.find(idVendor=0x2123, idProduct=0x1010)
# HID detach for Linux systems...tested with 0x2123 product
if self.dev is None:
raise ValueError('Missile launcher not found.')
if sys.platform == "linux2":
try:
if self.dev.is_kernel_driver_active(1) is True:
self.dev.detach_kernel_driver(1)
else:
self.dev.detach_kernel_driver(0)
except Exception, e:
pass
#some physical constraints of our rocket launcher
self.missile_capacity = 4
#experimentally estimated speed scaling factors
self.y_speed = 0.48
self.x_speed = 1.2
#approximate number of seconds of movement to reach end of range
self.x_range = 6.5 # this turret has a 270 degree range of motion and if this value is set
# correcly should center to be facing directly away from the usb cable on the back
self.y_range = 0.75
#define directional constants
self.DOWN = 0x01
self.UP = 0x02
self.LEFT = 0x04
self.RIGHT = 0x08
def turretUp(self):
self.dev.ctrl_transfer(0x21, 0x09, 0, 0, [0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00])
def turretDown(self):
self.dev.ctrl_transfer(0x21, 0x09, 0, 0, [0x02, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00])
def turretLeft(self):
self.dev.ctrl_transfer(0x21, 0x09, 0, 0, [0x02, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00])
def turretRight(self):
self.dev.ctrl_transfer(0x21, 0x09, 0, 0, [0x02, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00])
def turretDirection(self,direction):
self.dev.ctrl_transfer(0x21, 0x09, 0, 0, [0x02, direction, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00])
def turretStop(self):
self.dev.ctrl_transfer(0x21, 0x09, 0, 0, [0x02, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00])
def turretFire(self):
self.dev.ctrl_transfer(0x21, 0x09, 0, 0, [0x02, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00])
def ledOn(self):
self.dev.ctrl_transfer(0x21, 0x09, 0, 0, [0x03, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00])
def ledOff(self):
self.dev.ctrl_transfer(0x21, 0x09, 0, 0, [0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00])
class Turret():
def __init__(self, opts):
self.opts = opts
# Choose correct Launcher
if opts.launcherID == "1130":
self.launcher = Launcher1130();
else:
self.launcher = Launcher2123();
self.missiles_remaining = self.launcher.missile_capacity
self.origin_x, self.origin_y = map(float, opts.origin.split(','))
self.killcam_count = 0
self.trackingTimer = time.time()
self.locked_on = 0
# initial setup
self.center()
self.launcher.ledOff()
if (opts.mode == "sweep"):
self.approx_x_position = self.origin_x
self.approx_y_position = self.origin_y
self.sweep_x_direction = 1
self.sweep_y_direction = 1
self.sweep_x_step = 0.05
self.sweep_y_step = 0.2
# turn off turret properly
def dispose(self):
self.launcher.turretStop()
turret.launcher.ledOff()
# roughly centers the turret to the middle of range or origin point if specified
def center(self):
self.launcher.center(self.origin_x, self.origin_y)
# adjusts the turret's position (units are fairly arbitary but work ok)
def adjust(self, right_dist, down_dist):
right_seconds = right_dist * self.launcher.x_speed
down_seconds = down_dist * self.launcher.y_speed
directionRight=0
directionDown=0
if right_seconds > 0:
directionRight = self.launcher.RIGHT
elif right_seconds < 0:
directionRight = self.launcher.LEFT
if down_seconds > 0:
directionDown = self.launcher.DOWN
elif down_seconds < 0:
directionDown = self.launcher.UP
#move diagonally first
self.launcher.turretDirection(directionDown | directionRight)
#move remaining distance in one direction
if (abs(right_seconds)>abs(down_seconds)):
time.sleep(abs(down_seconds))
self.launcher.turretDirection(directionRight)
time.sleep(abs(right_seconds-down_seconds))
else:
time.sleep(abs(right_seconds))
self.launcher.turretDirection(directionDown)
time.sleep(abs(down_seconds-right_seconds))
self.launcher.turretStop()
# OpenCV takes pictures VERY quickly, so if we use it, we must
# add an artificial delay to reduce camera wobble and improve clarity
time.sleep(.2)
#stores images of the targets within the killcam folder
def killcam(self, camera):
# create killcam dir if none exists, then find first unused filename
if not os.path.exists("killcam"):
os.makedirs("killcam")
filename_locked_on = os.path.join("killcam", "lockedon" + str(self.killcam_count) + ".jpg")
while os.path.exists(filename_locked_on):
self.killcam_count += 1
filename_locked_on = os.path.join("killcam", "lockedon" + str(self.killcam_count) + ".jpg")
# save the image with the target being locked on
cv2.imwrite(filename_locked_on, camera.frame_mod)
# wait a little bit to attempt to catch the target's reaction.
time.sleep(1) # tweak this value for most hilarious action shots
camera.new_frame_available = False #force camera to obtain image after this point
# take another picture of the target while it is being fired upon
filename_firing = os.path.join("killcam", "firing" + str(self.killcam_count) + ".jpg")
camera.face_detect(filename=filename_firing)
if not opts.no_display:
camera.display()
self.killcam_count += 1
# compensate vertically for distance to target
def projectile_compensation(self, target_y_size):
if target_y_size > 0:
# objects further away will need a greater adjustment to hit target
adjust_amount = 0.1 * math.log(target_y_size)
else:
# log 0 will throw an error, so handle this case even though unlikely to occur
adjust_amount = 0
# tilt the turret up to try to increase range
self.adjust(0, adjust_amount)
if opts.verbose:
print "size of target: %.6f" % target_y_size
print "compensation amount: %.6f" % adjust_amount
# turn on LED if face detected in range, and fire missiles if armed
def ready_aim_fire(self, x_adj, y_adj, target_y_size, face_detected, camera=None):
fired = False
if face_detected and abs(x_adj) < .05 and abs(y_adj) < .05:
turret.launcher.ledOn() # LED will turn on when target is locked
if self.opts.armed:
# aim a little higher if our target is in the distance
self.projectile_compensation(target_y_size)
turret.launcher.turretFire()
self.missiles_remaining -= 1
fired = True
if camera:
self.killcam(camera) # save a picture of the target
time.sleep(3) # disable turret for approximate time required to fire
print 'Missile fired! Estimated ' + str(self.missiles_remaining) + ' missiles remaining.'
if self.missiles_remaining < 1:
turret.launcher.ledOff()
raw_input("Ammunition depleted. Awaiting order to continue assault. [ENTER]")
self.missiles_remaining = 4
else:
print 'Turret trained but not firing because of the --disarm directive.'
else:
turret.launcher.ledOff()
return fired
#keeps track of length of time since a target was found or lost
def updateTrackingDuration(self, is_locked_on):
if is_locked_on:
if self.locked_on:
trackingDuration = time.time() - self.trackingTimer
else:
self.locked_on = True
self.trackingTimer = time.time()
trackingDuration = 0
else: #not locked on
if self.locked_on:
self.locked_on = False
self.trackingTimer = time.time()
trackingDuration = 0
else:
trackingDuration = -(time.time() - self.trackingTimer)
return trackingDuration #negative values indicate time since target seen
#increments the sweeping behaviour of a turret on patrol
def sweep(self):
self.approx_x_position += self.sweep_x_direction * self.sweep_x_step
if(self.approx_x_position<=1 and self.approx_x_position>=0):
#move in x direction first
turret.launcher.moveRelative(self.sweep_x_step * self.sweep_x_direction, 0)
else:
#reached end of x range. move in y direction and switch x sweep direction
self.sweep_x_direction = -1 * self.sweep_x_direction
self.approx_x_position += self.sweep_x_direction * self.sweep_x_step
self.approx_y_position += self.sweep_y_direction * self.sweep_y_step
if(self.approx_y_position<=1 and self.approx_y_position>=0):
#take a step in current y direction
self.launcher.moveRelative(0, 0.2 * self.sweep_y_direction)
else:
#swap y direction and take a step in that direction instead
self.sweep_y_direction = -1 * self.sweep_y_direction
self.approx_y_position += self.sweep_y_direction * 2 * self.sweep_y_step # reverse previous y step and take a new step
self.launcher.moveRelative(0, self.sweep_y_step * self.sweep_y_direction)
time.sleep(.2) #allow camera to stabilize
class Camera():
def __init__(self, opts):
self.opts = opts
self.current_image_viewer = None # image viewer not yet launched
self.webcam = cv2.VideoCapture(int(self.opts.camera)) # open a channel to our camera
if(not self.webcam.isOpened()): # return error if unable to connect to hardware
raise ValueError('Error connecting to specified camera')
#if supported by camera set image width and height to desired values
img_w, img_h = map(int, self.opts.image_dimensions.split('x'))
self.resolution_set = self.webcam.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH,img_w)
self.resolution_set = self.resolution_set and self.webcam.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT,img_h)
# initialize classifier with training set of faces
self.face_filter = cv2.CascadeClassifier(self.opts.haar_file)
if (opts.profile):
self.profile_filter = cv2.CascadeClassifier(self.opts.haar_profile_file)
# create a separate thread to grab frames from camera. This prevents a frame buffer from filling up with old images
self.camThread = threading.Thread(target=self.grab_frames)
self.camThread.daemon = True
self.currentFrameLock = threading.Lock()
self.new_frame_available = False
self.camThread.start()
# turn off camera properly
def dispose(self):
if sys.platform == 'linux2' or sys.platform == 'darwin':
if self.current_image_viewer:
subprocess.call(['killall', self.current_image_viewer], stdout=FNULL, stderr=FNULL)
else:
self.webcam.release()
# runs to grab latest frames from camera
def grab_frames(self):
while(1): # loop until process is shut down
if not self.webcam.grab():
raise ValueError('frame grab failed')
time.sleep(.015)
retval, most_recent_frame = self.webcam.retrieve(channel=0)
if not retval:
raise ValueError('frame capture failed')
self.currentFrameLock.acquire()
self.current_frame = most_recent_frame
self.new_frame_available = True
self.currentFrameLock.release()
time.sleep(.015)
# runs facial recognition on our previously captured image and returns
# (x,y)-distance between target and center (as a fraction of image dimensions)
def face_detect(self, filename=None):
def draw_reticule(img, x, y, width, height, color, style="corners"):
w, h = width, height
if style == "corners":
cv2.line(img, (x, y), (x+w/3, y), color, 2)
cv2.line(img, (x+2*w/3, y), (x+w, y), color, 2)
cv2.line(img, (x+w, y), (x+w, y+h/3), color, 2)
cv2.line(img, (x+w, y+2*h/3), (x+w, y+h), color, 2)
cv2.line(img, (x, y), (x, y+h/3), color, 2)
cv2.line(img, (x, y+2*h/3), (x, y+h), color, 2)
cv2.line(img, (x, y+h), (x+w/3, y+h), color, 2)
cv2.line(img, (x+2*w/3, y+h), (x+w, y+h), color, 2)
else:
cv2.rectangle(img, (x, y), (x+w, y+h), color)
# load image, then resize it to specified size
while(not self.new_frame_available):
time.sleep(.001)
self.currentFrameLock.acquire()
img = self.current_frame.copy()
self.new_frame_available = False
self.currentFrameLock.release()
img_w, img_h = map(int, self.opts.image_dimensions.split('x'))
if(not self.resolution_set):
img = cv2.resize(img, (img_w, img_h))
#convert to grayscale since haar operates on grayscale images anyways
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# detect faces (might want to make the minNeighbors threshold adjustable)
faces = self.face_filter.detectMultiScale(img, minNeighbors=4)
# a bit silly, but works correctly regardless of whether faces is an ndarray or empty tuple
faces = map(lambda f: f.tolist(), faces)
if (opts.profile): #if profile detection is enabled, runs two additional filters to detect side views of faces
faces_left = self.profile_filter.detectMultiScale(img, minNeighbors=4)
faces_right = self.profile_filter.detectMultiScale(cv2.flip(img,1), minNeighbors=4)
faces_left = map(lambda f: f.tolist(), faces_left)
faces_right = map(lambda f: f.tolist(), faces_right)
for row in faces_right:
row[0] = img_w - (row[0] + row[3])
faces = faces + faces_left + faces_right #concatenate lists of faces
# convert back from grayscale, so that we can draw red targets over a grayscale
# photo, for an especially ominous effect
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if self.opts.verbose:
print 'faces detected: ' + str(faces)
# sort by size of face (we use the last face for computing x_adj, y_adj)
faces.sort(key=lambda face: face[2]*face[3])
x_adj, y_adj = (0, 0) # (x,y)-distance from center, as a fraction of image dimensions
face_y_size = 0 # height of the detected face, used to gauge distance to target
if len(faces) > 0:
face_detected = True
# draw a rectangle around all faces except last face
for (x, y, w, h) in faces[:-1]:
draw_reticule(img, x, y, w, h, (0, 0, 60), "box")
# get last face, draw target, and calculate distance from center
(x, y, w, h) = faces[-1]
draw_reticule(img, x, y, w, h, (0, 0, 170), "corners")
x_adj = ((x + w/2) - img_w/2) / float(img_w)
y_adj = ((y + h/2) - img_h/2) / float(img_h)
face_y_size = h / float(img_h)
else:
face_detected = False
#store modified image as class variable so that display() can access it
self.frame_mod = img
if filename: #save to file if desired
cv2.imwrite(filename, img)
return face_detected, x_adj, y_adj, face_y_size
# display the OpenCV-processed images
def display(self):
#not tested on Mac, but the openCV libraries should be fairly cross-platform
cv2.imshow("cameraFeed", self.frame_mod)
# delay of 2 ms for refreshing screen (time.sleep() doesn't work)
cv2.waitKey(2)
if __name__ == '__main__':
if (sys.platform == 'linux2' or sys.platform == 'darwin') and not os.geteuid() == 0:
sys.exit("Script must be run as root.")
# command-line options
parser = OptionParser()
parser.add_option("-l", "--launcher", dest="launcherID", default="2123",
help="specify VendorID of the missile launcher to use. Default: '2123' (dreamcheeky thunder)",
metavar="LAUNCHER")
parser.add_option("-d", "--disarm", action="store_false", dest="armed", default=True,
help="track faces but do not fire any missiles")
parser.add_option("-r", "--reset", action="store_true", dest="reset_only", default=False,
help="reset the turret position and exit")
parser.add_option("--nd", "--no-display", action="store_true", dest="no_display", default=False,
help="do not display captured images")
parser.add_option("-c", "--camera", dest="camera", default='0',
help="specify the camera # to use. Default: 0", metavar="NUM")
parser.add_option("-s", "--size", dest="image_dimensions", default='320x240',
help="image dimensions (recommended: 320x240 or 640x480). Default: 320x240",
metavar="WIDTHxHEIGHT")
parser.add_option("-v", "--verbose", action="store_true", dest="verbose", default=False,
help="detailed output, including timing information")
parser.add_option("-m", "--mode", dest="mode", default="follow",
help="choose behaviour of sentry. options (follow, sweep, guard) default:follow", metavar="NUM")
parser.add_option("-o", "--origin", dest="origin", default="0.5,0.5",
help="direction to point initially - an x and y decimal percentage. Default: 0.5,0.5", metavar="X,Y")
parser.add_option("-p", "--profile", action="store_true", dest="profile", default=False,
help="enable detection of facial side views - better detection but slower")
opts, args = parser.parse_args()
print opts
# additional options
opts = AttributeDict(vars(opts)) # converting opts to an AttributeDict so we can add extra options
opts.haar_file = 'haarcascade_frontalface_default.xml'
opts.haar_profile_file = 'haarcascade_profileface.xml'
turret = Turret(opts)
camera = Camera(opts)
turretCentered = True
while (not camera.new_frame_available):
time.sleep(.001) #wait for first frame to be captured
if not opts.reset_only:
while True:
try:
start_time = time.time()
face_detected, x_adj, y_adj, face_y_size = camera.face_detect()
detection_time = time.time()
if not opts.no_display:
camera.display()
trackingDuration = turret.updateTrackingDuration(face_detected)
#if target is already centered in sights take the shot
turret.ready_aim_fire(x_adj, y_adj, face_y_size, face_detected, camera)
if face_detected:
#face detected: move turret to track
if opts.verbose:
print "adjusting turret: x=" + str(x_adj) + ", y=" + str(y_adj)
turret.adjust(x_adj, y_adj)
turretCentered=False
elif (opts.mode=="guard") and (trackingDuration < -10) and (not turretCentered):
#If turret is in guard mode and has lost track of its target it should reset to the position it is guarding
turret.center()
turretCentered=True
elif(opts.mode=="sweep") and (trackingDuration < -3):
turret.sweep()
movement_time = time.time()
camera.new_frame_available = False #force camera to obtain next image after movement has completed
if opts.verbose:
print "total time: " + str(movement_time - start_time)
print "detection time: " + str(detection_time - start_time)
print "movement time: " + str(movement_time - detection_time)
except KeyboardInterrupt:
turret.dispose()
camera.dispose()
break