-
Notifications
You must be signed in to change notification settings - Fork 18
/
run_pretraining.py
405 lines (353 loc) · 18.5 KB
/
run_pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import os
import json
import random
import logging
import numpy as np
from tqdm import tqdm
from pathlib import Path
from collections import namedtuple
from argparse import ArgumentParser
from tempfile import TemporaryDirectory
import torch
from tensorboardX import SummaryWriter
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader, Dataset, SequentialSampler
from pytorch_pretrain_bert.modeling import PROP, BertConfig
from pytorch_pretrain_bert.tokenization import BertTokenizer
from pytorch_pretrain_bert.optimization import BertAdam, warmup_linear
InputFeatures = namedtuple("InputFeatures", "input_ids input_mask segment_ids label lm_label_ids ")
log_format = '%(asctime)-10s: %(message)s'
logging.basicConfig(level=logging.INFO, format=log_format)
def convert_example_to_features(example, max_seq_length):
label = example["label"]
input_ids = example["input_ids"]
segment_ids = example["segment_ids"]
masked_label_ids = example["masked_label_ids"]
masked_lm_positions = example["masked_lm_positions"]
# The preprocessed data should be already truncated
assert len(input_ids) == len(segment_ids) <= max_seq_length
input_array = np.zeros(max_seq_length, dtype=np.int)
input_array[:len(input_ids)] = input_ids
mask_array = np.zeros(max_seq_length, dtype=np.int)
mask_array[:len(input_ids)] = 1
segment_array = np.zeros(max_seq_length, dtype=np.int)
segment_array[:len(segment_ids)] = segment_ids
lm_label_array = np.full(max_seq_length, dtype=np.int, fill_value=-1)
lm_label_array[masked_lm_positions] = masked_label_ids
features = InputFeatures(input_ids=input_array,
input_mask=mask_array,
segment_ids=segment_array,
lm_label_ids=lm_label_array,
label=label
)
return features
class PregeneratedDataset(Dataset):
def __init__(self, training_path, epoch, num_data_epochs, temp_dir='./', mode='train'):
self.epoch = epoch
self.data_epoch = epoch % num_data_epochs
data_file = training_path / f"epoch_{self.data_epoch}.json"
metrics_file = training_path / f"epoch_{self.data_epoch}_metrics.json"
assert data_file.is_file() and metrics_file.is_file()
metrics = json.loads(metrics_file.read_text())
num_samples = metrics['num_training_examples']
if mode == 'train':
# Samples for one epoch should not larger than 26000000
if num_samples > 26000000:
num_samples = 26000000
else:
num_samples = 1000 # NOT USE
self.temp_dir = None
self.working_dir = None
seq_len = metrics['max_seq_len']
self.temp_dir = TemporaryDirectory(dir=temp_dir)
self.working_dir = Path(self.temp_dir.name)
input_ids = np.memmap(filename=self.working_dir/'input_ids.memmap',
mode='w+', dtype=np.int32, shape=(num_samples, seq_len))
input_masks = np.memmap(filename=self.working_dir/'input_masks.memmap',
shape=(num_samples, seq_len), mode='w+', dtype=np.int32)
segment_ids = np.memmap(filename=self.working_dir/'segment_ids.memmap',
shape=(num_samples, seq_len), mode='w+', dtype=np.int32)
labels = np.memmap(filename=self.working_dir/'labels.memmap',
shape=(num_samples), mode='w+', dtype=np.bool)
lm_label_ids = np.memmap(filename=self.working_dir/'lm_label_ids.memmap',
shape=(num_samples, seq_len), mode='w+', dtype=np.int32)
lm_label_ids[:] = -1
logging.info(f"Loading {mode} examples for epoch {epoch}")
with data_file.open() as f:
instance_index = 0
for i, line in enumerate(tqdm(f, total=num_samples, desc=f"{mode} examples")):
if i+1 > num_samples:
break
line = line.strip()
example = json.loads(line)
features = convert_example_to_features(example, seq_len)
input_ids[instance_index] = features.input_ids
segment_ids[instance_index] = features.segment_ids
input_masks[instance_index] = features.input_mask
labels[instance_index] = features.label
lm_label_ids[i] = features.lm_label_ids
instance_index += 1
logging.info('Real num samples:{}'.format(instance_index))
logging.info("Loading complete!")
self.num_samples = num_samples
self.seq_len = seq_len
self.input_ids = input_ids
self.input_masks = input_masks
self.segment_ids = segment_ids
self.labels = labels
self.lm_label_ids = lm_label_ids
def __len__(self):
return self.num_samples
def __getitem__(self, item):
return (torch.tensor(self.input_ids[item].astype(np.int64)),
torch.tensor(self.input_masks[item].astype(np.int64)),
torch.tensor(self.segment_ids[item].astype(np.int64)),
torch.tensor(int(self.labels[item])),
torch.tensor(self.lm_label_ids[item].astype(np.int64)),
)
class RandomPairSampler(torch.utils.data.Sampler):
def __init__(self, data_source, negtive=1):
self.data_source = data_source
self.negtive = negtive
if (len(self.data_source)%(self.negtive+1)) !=0:
raise ValueError('data length {} % {} !=0, can not pair data!'.format(len(self.data_source), self.negtive+1))
@property
def num_samples(self):
return len(self.data_source)
def __iter__(self):
indices = torch.arange(len(self.data_source))
paired_indices = indices.unfold(0, self.negtive+1, self.negtive+1)
paired_indices = torch.stack([paired_indices[i] for i in range(len(paired_indices))])
paired_indices = paired_indices[torch.randperm(len(paired_indices))]
indices = paired_indices.view(-1)
return iter(indices.tolist())
def __len__(self):
return len(self.data_source)
def main():
parser = ArgumentParser()
parser.add_argument('--pregenerated_data', type=Path, required=True)
parser.add_argument('--output_dir', type=Path, required=True)
parser.add_argument("--temp_dir", type=str, default='./')
parser.add_argument("--bert_model", type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--do_lower_case", action="store_true")
parser.add_argument("--epochs", type=int, default=3, help="Number of epochs to train for")
parser.add_argument("--negtive_num",
type=int,
default=1,
help="Nums of negtive exmaples for one positive example.")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for eval.")
parser.add_argument("--save_checkpoints_steps",
default=10000,
type=int,
help="How often to save the model checkpoint.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--learning_rate",
default=3e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
args = parser.parse_args()
assert args.pregenerated_data.is_dir(), \
"--pregenerated_data should point to the folder of files made by pregenerate_training_data.py!"
samples_per_epoch = []
for i in range(args.epochs):
epoch_file = args.pregenerated_data / f"epoch_{i}.json"
metrics_file = args.pregenerated_data / f"epoch_{i}_metrics.json"
if epoch_file.is_file() and metrics_file.is_file():
metrics = json.loads(metrics_file.read_text())
# Samples for one epoch should not larger than 26000000
metrics['num_training_examples'] = metrics['num_training_examples'] if metrics['num_training_examples'] < 26000000 else 26000000
samples_per_epoch.append(metrics['num_training_examples'])
else:
if i == 0:
exit("No training data was found!")
print(f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs}).")
print("This script will loop over the available data, but training diversity may be negatively impacted.")
num_data_epochs = i
break
else:
num_data_epochs = args.epochs
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logging.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if args.output_dir.is_dir() and list(args.output_dir.iterdir()):
logging.warning(f"Output directory ({args.output_dir}) already exists and is not empty!")
args.output_dir.mkdir(parents=True, exist_ok=True)
writer = SummaryWriter(args.output_dir)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
total_train_examples = 0
for i in range(args.epochs):
# The modulo takes into account the fact that we may loop over limited epochs of data
total_train_examples += samples_per_epoch[i % len(samples_per_epoch)]
num_train_optimization_steps = int(
total_train_examples / args.train_batch_size / args.gradient_accumulation_steps)
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
# Prepare model
model = PROP.from_pretrained(args.bert_model)
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
# try:
# from apex.parallel import DistributedDataParallel as DDP
# except ImportError:
# raise ImportError(
# "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
# model = DDP(model)
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[
args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True,
)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
model.train()
for epoch in range(args.epochs):
epoch_train_dataset = PregeneratedDataset(epoch=epoch, training_path=args.pregenerated_data,
num_data_epochs=num_data_epochs, temp_dir=args.temp_dir)
epoch_eval_dataset = PregeneratedDataset(epoch=epoch, training_path=args.pregenerated_data,
num_data_epochs=num_data_epochs, temp_dir=args.temp_dir, mode='eval')
if args.local_rank == -1:
train_sampler = RandomPairSampler(epoch_train_dataset, args.negtive_num)
eval_sampler = SequentialSampler(epoch_eval_dataset)
else:
# Not supported
train_sampler = DistributedSampler(epoch_train_dataset)
eval_sampler = DistributedSampler(epoch_eval_dataset)
train_dataloader = DataLoader(epoch_train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
eval_dataloader = DataLoader(epoch_eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
tr_loss = 0
nb_tr_steps = 0
logging.info("***** Running training *****")
logging.info(f" Num examples = {total_train_examples}")
logging.info(" Batch size = %d", args.train_batch_size)
logging.info(" Num steps = %d", num_train_optimization_steps)
with tqdm(total=len(train_dataloader), desc=f"Epoch {epoch}") as pbar:
for step, batch in enumerate(train_dataloader):
model.train()
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label, lm_label_ids = batch
loss = model(input_ids, segment_ids, input_mask, lm_label_ids, label)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
tr_loss += loss.item()
nb_tr_steps += 1
pbar.update(1)
mean_loss = tr_loss * args.gradient_accumulation_steps / nb_tr_steps
pbar.set_postfix_str(f"Loss: {mean_loss:.5f}")
writer.add_scalar('train/loss', round(mean_loss,4), global_step)
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps,
args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
if global_step % args.save_checkpoints_steps == 0:
with torch.no_grad():
# Save a ckpt
logging.info("** ** * Saving model ** ** * ")
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = args.output_dir / "pytorch_model_{}.bin".format(global_step)
torch.save(model_to_save.state_dict(), str(output_model_file))
# Save the last model
logging.info("** ** * Saving model ** ** * ")
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = args.output_dir / "pytorch_model_last.bin"
torch.save(model_to_save.state_dict(), str(output_model_file))
writer.close()
if __name__ == '__main__':
main()