forked from time-series-foundation-models/lag-llama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
843 lines (759 loc) · 32.5 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
# Copyright 2024 Arjun Ashok
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
warnings.simplefilter(action="ignore", category=FutureWarning)
warnings.simplefilter(action="ignore", category=UserWarning)
import argparse
import gc
import json
import os
from hashlib import sha1
import lightning
import torch
import wandb
from gluonts.evaluation import Evaluator, make_evaluation_predictions
from gluonts.evaluation._base import aggregate_valid
from gluonts.transform import ExpectedNumInstanceSampler
from lightning.pytorch.callbacks import (
EarlyStopping,
ModelCheckpoint,
StochasticWeightAveraging,
LearningRateMonitor
)
from lightning.pytorch.loggers import WandbLogger
from data.data_utils import (
CombinedDataset,
SingleInstanceSampler,
create_test_dataset,
create_train_and_val_datasets_with_dates,
)
from data.dataset_list import ALL_DATASETS
from utils.utils import plot_forecasts, set_seed
from lag_llama.gluon.estimator import LagLlamaEstimator
def train(args):
# Set seed
set_seed(args.seed)
lightning.seed_everything(args.seed)
# # Print GPU stats
# print_gpu_stats()
# Create a directory to store the results in
# This string is made independent of hyperparameters here, as more hyperparameters / arguments may be added later
# The name should be created in the calling bash script
# This way, when that same script is executed again, automatically the model training is resumed from a checkpoint if available
experiment_name = args.experiment_name
fulldir_experiments = os.path.join(args.results_dir, experiment_name, str(args.seed))
if os.path.exists(fulldir_experiments): print(fulldir_experiments, "already exists.")
os.makedirs(fulldir_experiments, exist_ok=True)
# Create directory for checkpoints
checkpoint_dir = os.path.join(fulldir_experiments, "checkpoints")
os.makedirs(checkpoint_dir, exist_ok=True)
# Code to retrieve the version with the highest #epoch stored and restore it incl directory and its checkpoint
if args.ckpt_path:
ckpt_path = args.ckpt_path
elif args.get_ckpt_path_from_experiment_name:
fulldir_experiments_for_ckpt_path = os.path.join(args.results_dir, args.get_ckpt_path_from_experiment_name, str(args.seed))
full_experiment_name_original = args.get_ckpt_path_from_experiment_name + "-seed-" + str(args.seed)
experiment_id_original = sha1(full_experiment_name_original.encode("utf-8")).hexdigest()[:8]
checkpoint_dir_wandb = os.path.join(fulldir_experiments_for_ckpt_path, "lag-llama", experiment_id_original, "checkpoints")
file = os.listdir(checkpoint_dir_wandb)[-1]
if file: ckpt_path = os.path.join(checkpoint_dir_wandb, file)
if not ckpt_path: raise Exception("ckpt_path not found from experiment name")
# Delete the EarlyStoppingCallback and save it in the current checkpoint_dir
new_ckpt_path = checkpoint_dir + "/pretrained_ckpt.ckpt"
print("Moving", ckpt_path, "to", new_ckpt_path)
ckpt_loaded = torch.load(ckpt_path)
del ckpt_loaded['callbacks']["EarlyStopping{'monitor': 'val_loss', 'mode': 'min'}"]
ckpt_loaded['callbacks']["ModelCheckpoint{'monitor': None, 'mode': 'min', 'every_n_train_steps': 0, 'every_n_epochs': 1, 'train_time_interval': None}"]["best_model_path"] = new_ckpt_path
ckpt_loaded['callbacks']["ModelCheckpoint{'monitor': None, 'mode': 'min', 'every_n_train_steps': 0, 'every_n_epochs': 1, 'train_time_interval': None}"]["dirpath"] = checkpoint_dir
del ckpt_loaded['callbacks']["ModelCheckpoint{'monitor': None, 'mode': 'min', 'every_n_train_steps': 0, 'every_n_epochs': 1, 'train_time_interval': None}"]["last_model_path"]
torch.save(ckpt_loaded, checkpoint_dir + "/pretrained_ckpt.ckpt")
ckpt_path = checkpoint_dir + "/pretrained_ckpt.ckpt"
else:
ckpt_path = None
if not args.evaluate_only:
ckpt_path = checkpoint_dir + "/last.ckpt"
if not os.path.isfile(ckpt_path): ckpt_path = None
else:
if args.evaluate_only:
full_experiment_name_original = experiment_name + "-seed-" + str(args.seed)
experiment_id_original = sha1(full_experiment_name_original.encode("utf-8")).hexdigest()[:8]
checkpoint_dir_wandb = os.path.join(fulldir_experiments, "lag-llama", experiment_id_original, "checkpoints")
file = os.listdir(checkpoint_dir_wandb)[-1]
if file: ckpt_path = os.path.join(checkpoint_dir_wandb, file)
elif args.evaluate_only:
for file in os.listdir(checkpoint_dir):
if "best" in file:
ckpt_path = checkpoint_dir + "/" + file
break
if ckpt_path:
print("Checkpoint", ckpt_path, "retrieved from experiment directory")
else:
print("No checkpoints found. Training from scratch.")
# W&B logging
# NOTE: Caution when using `full_experiment_name` after this
if args.eval_prefix and (args.evaluate_only): experiment_name = args.eval_prefix + "_" + experiment_name
full_experiment_name = experiment_name + "-seed-" + str(args.seed)
experiment_id = sha1(full_experiment_name.encode("utf-8")).hexdigest()[:8]
logger = WandbLogger(name=full_experiment_name, \
save_dir=fulldir_experiments, group=experiment_name, \
tags=args.wandb_tags, entity=args.wandb_entity, \
project=args.wandb_project, allow_val_change=True, \
config=vars(args), id=experiment_id, \
mode=args.wandb_mode, settings=wandb.Settings(code_dir="."))
# Callbacks
swa_callbacks = StochasticWeightAveraging(
swa_lrs=args.swa_lrs,
swa_epoch_start=args.swa_epoch_start,
annealing_epochs=args.annealing_epochs,
annealing_strategy=args.annealing_strategy,
)
early_stop_callback = EarlyStopping(
monitor="val_loss",
min_delta=0.00,
patience=int(args.early_stopping_patience),
verbose=True,
mode="min",
)
model_checkpointing = ModelCheckpoint(
dirpath=checkpoint_dir,
save_last=True,
save_top_k=1,
filename="best-{epoch}-{val_loss:.2f}",
)
lr_monitor = LearningRateMonitor(logging_interval='step')
callbacks = [early_stop_callback,
lr_monitor,
model_checkpointing
]
if args.swa:
print("Using SWA")
callbacks.append(swa_callbacks)
# Create train and test datasets
if not args.single_dataset:
train_dataset_names = args.all_datasets
for test_dataset in args.test_datasets:
train_dataset_names.remove(test_dataset)
print("Training datasets:", train_dataset_names)
print("Test datasets:", args.test_datasets)
data_id_to_name_map = {}
name_to_data_id_map = {}
for data_id, name in enumerate(train_dataset_names):
data_id_to_name_map[data_id] = name
name_to_data_id_map[name] = data_id
test_data_id = -1
for name in args.test_datasets:
data_id_to_name_map[test_data_id] = name
name_to_data_id_map[name] = test_data_id
test_data_id -= 1
else:
print("Training and test on", args.single_dataset)
data_id_to_name_map = {}
name_to_data_id_map = {}
data_id_to_name_map[0] = args.single_dataset
name_to_data_id_map[args.single_dataset] = 0
# Get prediction length and set it if we are in the single dataset
if args.single_dataset and args.use_dataset_prediction_length:
_, prediction_length, _ = create_test_dataset(
args.single_dataset, args.dataset_path, 0
)
args.prediction_length = prediction_length
# Cosine Annealing LR
if args.use_cosine_annealing_lr:
cosine_annealing_lr_args = {"T_max": args.cosine_annealing_lr_t_max, \
"eta_min": args.cosine_annealing_lr_eta_min}
else:
cosine_annealing_lr_args = {}
# Create the estimator
estimator = LagLlamaEstimator(
prediction_length=args.prediction_length,
context_length=args.context_length,
input_size=1,
batch_size=args.batch_size,
n_layer=args.n_layer,
n_embd_per_head=args.n_embd_per_head,
n_head=args.n_head,
max_context_length=2048,
rope_scaling=None,
scaling=args.data_normalization,
lr=args.lr,
weight_decay=args.weight_decay,
distr_output=args.distr_output,
# augmentations
aug_prob=args.aug_prob,
freq_mask_rate=args.freq_mask_rate,
freq_mixing_rate=args.freq_mixing_rate,
jitter_prob=args.jitter_prob,
jitter_sigma=args.jitter_sigma,
scaling_prob=args.scaling_prob,
scaling_sigma=args.scaling_sigma,
rotation_prob=args.rotation_prob,
permutation_prob=args.permutation_prob,
permutation_max_segments=args.permutation_max_segments,
permutation_seg_mode=args.permutation_seg_mode,
magnitude_warp_prob=args.magnitude_warp_prob,
magnitude_warp_sigma=args.magnitude_warp_sigma,
magnitude_warp_knot=args.magnitude_warp_knot,
time_warp_prob=args.time_warp_prob,
time_warp_sigma=args.time_warp_sigma,
time_warp_knot=args.time_warp_knot,
window_slice_prob=args.window_slice_prob,
window_slice_reduce_ratio=args.window_slice_reduce_ratio,
window_warp_prob=args.window_warp_prob,
window_warp_window_ratio=args.window_warp_window_ratio,
window_warp_scales=args.window_warp_scales,
# others
num_batches_per_epoch=args.num_batches_per_epoch,
num_parallel_samples=args.num_parallel_samples,
time_feat=args.time_feat,
dropout=args.dropout,
lags_seq=args.lags_seq,
data_id_to_name_map=data_id_to_name_map,
use_cosine_annealing_lr=args.use_cosine_annealing_lr,
cosine_annealing_lr_args=cosine_annealing_lr_args,
track_loss_per_series=args.single_dataset != None,
ckpt_path=ckpt_path,
trainer_kwargs=dict(
max_epochs=args.max_epochs,
accelerator="gpu",
devices=[args.gpu],
limit_val_batches=args.limit_val_batches,
logger=logger,
callbacks=callbacks,
default_root_dir=fulldir_experiments,
),
)
# Save the args as config to the directory
config_filepath = fulldir_experiments + "/args.json"
with open(config_filepath, "w") as config_savefile:
json.dump(vars(args), config_savefile, indent=4)
# Save the number of parameters to the directory for easy retrieval
num_parameters = sum(
p.numel() for p in estimator.create_lightning_module().parameters()
)
num_parameters_path = fulldir_experiments + "/num_parameters.txt"
with open(num_parameters_path, "w") as num_parameters_savefile:
num_parameters_savefile.write(str(num_parameters))
# Log num_parameters
logger.log_metrics({"num_parameters": num_parameters})
# Create samplers
# Here we make a window slightly bigger so that instance sampler can sample from each window
# An alternative is to have exact size and use different instance sampler (e.g. ValidationSplitSampler)
# We change ValidationSplitSampler to add min_past
history_length = estimator.context_length + max(estimator.lags_seq)
prediction_length = args.prediction_length
window_size = history_length + prediction_length
print(
"Context length:",
estimator.context_length,
"Prediction Length:",
estimator.prediction_length,
"max(lags_seq):",
max(estimator.lags_seq),
"Therefore, window size:",
window_size,
)
# Remove max(estimator.lags_seq) if the dataset is too small
if args.use_single_instance_sampler:
estimator.train_sampler = SingleInstanceSampler(
min_past=estimator.context_length + max(estimator.lags_seq),
min_future=estimator.prediction_length,
)
estimator.validation_sampler = SingleInstanceSampler(
min_past=estimator.context_length + max(estimator.lags_seq),
min_future=estimator.prediction_length,
)
else:
estimator.train_sampler = ExpectedNumInstanceSampler(
num_instances=1.0,
min_past=estimator.context_length + max(estimator.lags_seq),
min_future=estimator.prediction_length,
)
estimator.validation_sampler = ExpectedNumInstanceSampler(
num_instances=1.0,
min_past=estimator.context_length + max(estimator.lags_seq),
min_future=estimator.prediction_length,
)
## Batch size
batch_size = args.batch_size
if args.evaluate_only:
pass
else:
if not args.single_dataset:
# Create training and validation data
all_datasets, val_datasets, dataset_num_series = [], [], []
dataset_train_num_points, dataset_val_num_points = [], []
for data_id, name in enumerate(train_dataset_names):
data_id = name_to_data_id_map[name]
(
train_dataset,
val_dataset,
total_train_points,
total_val_points,
total_val_windows,
max_train_end_date,
total_points,
) = create_train_and_val_datasets_with_dates(
name,
args.dataset_path,
data_id,
history_length,
prediction_length,
num_val_windows=args.num_validation_windows,
last_k_percentage=args.single_dataset_last_k_percentage
)
print(
"Dataset:",
name,
"Total train points:", total_train_points,
"Total val points:", total_val_points,
)
all_datasets.append(train_dataset)
val_datasets.append(val_dataset)
dataset_num_series.append(len(train_dataset))
dataset_train_num_points.append(total_train_points)
dataset_val_num_points.append(total_val_points)
# Add test splits of test data to validation dataset, just for tracking purposes
test_datasets_num_series = []
test_datasets_num_points = []
test_datasets = []
if args.stratified_sampling:
if args.stratified_sampling == "series":
train_weights = dataset_num_series
val_weights = dataset_num_series + test_datasets_num_series # If there is just 1 series (airpassengers or saugeenday) this will fail
elif args.stratified_sampling == "series_inverse":
train_weights = [1/x for x in dataset_num_series]
val_weights = [1/x for x in dataset_num_series + test_datasets_num_series] # If there is just 1 series (airpassengers or saugeenday) this will fail
elif args.stratified_sampling == "timesteps":
train_weights = dataset_train_num_points
val_weights = dataset_val_num_points + test_datasets_num_points
elif args.stratified_sampling == "timesteps_inverse":
train_weights = [1 / x for x in dataset_train_num_points]
val_weights = [1 / x for x in dataset_val_num_points + test_datasets_num_points]
else:
train_weights = val_weights = None
train_data = CombinedDataset(all_datasets, weights=train_weights)
val_data = CombinedDataset(val_datasets+test_datasets, weights=val_weights)
else:
(
train_data,
val_data,
total_train_points,
total_val_points,
total_val_windows,
max_train_end_date,
total_points,
) = create_train_and_val_datasets_with_dates(
args.single_dataset,
args.dataset_path,
0,
history_length,
prediction_length,
num_val_windows=args.num_validation_windows,
last_k_percentage=args.single_dataset_last_k_percentage
)
print(
"Dataset:",
args.single_dataset,
"Total train points:", total_train_points,
"Total val points:", total_val_points,
)
# Batch size search since when we scale up, we might not be able to use the same batch size for all models
if args.search_batch_size:
estimator.num_batches_per_epoch = 10
estimator.limit_val_batches = 10
estimator.trainer_kwargs["max_epochs"] = 1
estimator.trainer_kwargs["callbacks"] = []
estimator.trainer_kwargs["logger"] = None
fulldir_batchsize_search = os.path.join(
fulldir_experiments, "batch-size-search"
)
os.makedirs(fulldir_batchsize_search, exist_ok=True)
while batch_size >= 1:
try:
print("Trying batch size:", batch_size)
batch_size_search_dir = os.path.join(
fulldir_batchsize_search, "batch-size-search-" + str(batch_size)
)
os.makedirs(batch_size_search_dir, exist_ok=True)
estimator.batch_size = batch_size
estimator.trainer_kwargs[
"default_root_dir"
] = fulldir_batchsize_search
# Train
train_output = estimator.train_model(
training_data=train_data,
validation_data=val_data,
shuffle_buffer_length=None,
ckpt_path=None,
)
break
except RuntimeError as e:
if "out of memory" in str(e):
gc.collect()
torch.cuda.empty_cache()
if batch_size == 1:
print(
"Batch is already at the minimum. Cannot reduce further. Exiting..."
)
exit(0)
else:
print("Caught OutOfMemoryError. Reducing batch size...")
batch_size //= 2
continue
else:
print(e)
exit(1)
estimator.num_batches_per_epoch = args.num_batches_per_epoch
estimator.limit_val_batches = args.limit_val_batches
estimator.trainer_kwargs["max_epochs"] = args.max_epochs
estimator.trainer_kwargs["callbacks"] = callbacks
estimator.trainer_kwargs["logger"] = logger
estimator.trainer_kwargs["default_root_dir"] = fulldir_experiments
if batch_size > 1: batch_size //= 2
estimator.batch_size = batch_size
print("\nUsing a batch size of", batch_size, "\n")
wandb.config.update({"batch_size": batch_size}, allow_val_change=True)
# Train
train_output = estimator.train_model(
training_data=train_data,
validation_data=val_data,
shuffle_buffer_length=None,
ckpt_path=ckpt_path,
)
# Set checkpoint path before evaluating
best_model_path = train_output.trainer.checkpoint_callback.best_model_path
estimator.ckpt_path = best_model_path
print("Using checkpoint:", estimator.ckpt_path, "for evaluation")
# Make directory to store metrics
metrics_dir = os.path.join(fulldir_experiments, "metrics")
os.makedirs(metrics_dir, exist_ok=True)
# Evaluate
evaluation_datasets = args.test_datasets + train_dataset_names if not args.single_dataset else [args.single_dataset]
for name in evaluation_datasets: # [test_dataset]:
print("Evaluating on", name)
test_data, prediction_length, total_points = create_test_dataset(
name, args.dataset_path, window_size
)
print("# of Series in the test data:", len(test_data))
# Adapt evaluator to new dataset
estimator.prediction_length = prediction_length
# Batch size loop just in case. This is mandatory as it involves sampling etc.
# NOTE: In case can't do sampling with even batch size of 1, then keep reducing num_parallel_samples until we can (keeping batch size at 1)
while batch_size >= 1:
try:
# Batch size
print("Trying batch size:", batch_size)
estimator.batch_size = batch_size
predictor = estimator.create_predictor(
estimator.create_transformation(),
estimator.create_lightning_module(),
)
# Make evaluations
forecast_it, ts_it = make_evaluation_predictions(
dataset=test_data, predictor=predictor, num_samples=args.num_samples
)
forecasts = list(forecast_it)
tss = list(ts_it)
break
except RuntimeError as e:
if "out of memory" in str(e):
gc.collect()
torch.cuda.empty_cache()
if batch_size == 1:
print(
"Batch is already at the minimum. Cannot reduce further. Exiting..."
)
exit(0)
else:
print("Caught OutOfMemoryError. Reducing batch size...")
batch_size //= 2
continue
else:
print(e)
exit(1)
if args.plot_test_forecasts:
print("Plotting forecasts")
figure = plot_forecasts(forecasts, tss, prediction_length)
wandb.log({f"Forecast plot of {name}": wandb.Image(figure)})
# Get metrics
evaluator = Evaluator(
num_workers=args.num_workers, aggregation_strategy=aggregate_valid
)
agg_metrics, _ = evaluator(
iter(tss), iter(forecasts), num_series=len(test_data)
)
# Save metrics
metrics_savepath = metrics_dir + "/" + name + ".json"
with open(metrics_savepath, "w") as metrics_savefile:
json.dump(agg_metrics, metrics_savefile)
# Log metrics. For now only CRPS is logged.
wandb_metrics = {}
wandb_metrics["test/" + name + "/" + "CRPS"] = agg_metrics["mean_wQuantileLoss"]
logger.log_metrics(wandb_metrics)
wandb.finish()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Experiment args
parser.add_argument("-e", "--experiment_name", type=str, required=True)
# Data arguments
parser.add_argument(
"-d",
"--dataset_path",
type=str,
default="datasets",
help="Enter the datasets folder path here"
)
parser.add_argument("--all_datasets", type=str, nargs="+", default=ALL_DATASETS)
parser.add_argument("-t", "--test_datasets", type=str, nargs="+", default=[])
parser.add_argument(
"--stratified_sampling",
type=str,
choices=["series", "series_inverse", "timesteps", "timesteps_inverse"],
)
# Seed
parser.add_argument("--seed", type=int, default=42)
# Model hyperparameters
parser.add_argument("--context_length", type=int, default=256)
parser.add_argument("--prediction_length", type=int, default=1)
parser.add_argument("--max_prediction_length", type=int, default=1024)
parser.add_argument("--n_layer", type=int, default=4)
parser.add_argument("--num_encoder_layer", type=int, default=4, help="Only for lag-transformer")
parser.add_argument("--n_embd_per_head", type=int, default=64)
parser.add_argument("--n_head", type=int, default=4)
parser.add_argument("--dim_feedforward", type=int, default=256)
parser.add_argument("--lags_seq", type=str, nargs="+", default=["Q", "M", "W", "D", "H", "T", "S"])
# Data normalization
parser.add_argument(
"--data_normalization", default=None, choices=["mean", "std", "robust", "none"]
)
## Augmentation hyperparameters
# Augmentation probability
parser.add_argument("--aug_prob", type=float, default=0)
# Frequency Masking
parser.add_argument(
"--freq_mask_rate", type=float, default=0.1, help="Rate of frequency masking"
)
# Frequency Mixing
parser.add_argument(
"--freq_mixing_rate", type=float, default=0.1, help="Rate of frequency mixing"
)
# Jitter
parser.add_argument(
"--jitter_prob",
type=float,
default=0,
help="Probability of applying Jitter augmentation",
)
parser.add_argument(
"--jitter_sigma",
type=float,
default=0.03,
help="Standard deviation for Jitter augmentation",
)
# Scaling
parser.add_argument(
"--scaling_prob",
type=float,
default=0,
help="Probability of applying Scaling augmentation",
)
parser.add_argument(
"--scaling_sigma",
type=float,
default=0.1,
help="Standard deviation for Scaling augmentation",
)
# Rotation
parser.add_argument(
"--rotation_prob",
type=float,
default=0,
help="Probability of applying Rotation augmentation",
)
# Permutation
parser.add_argument(
"--permutation_prob",
type=float,
default=0,
help="Probability of applying Permutation augmentation",
)
parser.add_argument(
"--permutation_max_segments",
type=int,
default=5,
help="Maximum segments for Permutation augmentation",
)
parser.add_argument(
"--permutation_seg_mode",
type=str,
default="equal",
choices=["equal", "random"],
help="Segment mode for Permutation augmentation",
)
# MagnitudeWarp
parser.add_argument(
"--magnitude_warp_prob",
type=float,
default=0,
help="Probability of applying MagnitudeWarp augmentation",
)
parser.add_argument(
"--magnitude_warp_sigma",
type=float,
default=0.2,
help="Standard deviation for MagnitudeWarp augmentation",
)
parser.add_argument(
"--magnitude_warp_knot",
type=int,
default=4,
help="Number of knots for MagnitudeWarp augmentation",
)
# TimeWarp
parser.add_argument(
"--time_warp_prob",
type=float,
default=0,
help="Probability of applying TimeWarp augmentation",
)
parser.add_argument(
"--time_warp_sigma",
type=float,
default=0.2,
help="Standard deviation for TimeWarp augmentation",
)
parser.add_argument(
"--time_warp_knot",
type=int,
default=4,
help="Number of knots for TimeWarp augmentation",
)
# WindowSlice
parser.add_argument(
"--window_slice_prob",
type=float,
default=0,
help="Probability of applying WindowSlice augmentation",
)
parser.add_argument(
"--window_slice_reduce_ratio",
type=float,
default=0.9,
help="Reduce ratio for WindowSlice augmentation",
)
# WindowWarp
parser.add_argument(
"--window_warp_prob",
type=float,
default=0,
help="Probability of applying WindowWarp augmentation",
)
parser.add_argument(
"--window_warp_window_ratio",
type=float,
default=0.1,
help="Window ratio for WindowWarp augmentation",
)
parser.add_argument(
"--window_warp_scales",
nargs="+",
type=float,
default=[0.5, 2.0],
help="Scales for WindowWarp augmentation",
)
# Argument to include time-features
parser.add_argument(
"--time_feat",
help="include time features",
action="store_true",
)
# Training arguments
parser.add_argument("-b", "--batch_size", type=int, default=256)
parser.add_argument("-m", "--max_epochs", type=int, default=10000)
parser.add_argument("-n", "--num_batches_per_epoch", type=int, default=100)
parser.add_argument("--limit_val_batches", type=int)
parser.add_argument("--early_stopping_patience", default=50)
parser.add_argument("--dropout", type=float, default=0.0)
# Evaluation arguments
parser.add_argument("--num_parallel_samples", type=int, default=100)
parser.add_argument("--num_samples", type=int, default=100)
parser.add_argument("--num_workers", type=int, default=1)
# GPU ID
parser.add_argument("--gpu", type=int, default=0)
# Directory to save everything in
parser.add_argument("-r", "--results_dir", type=str, required=True)
# W&B
parser.add_argument("-w", "--wandb_entity", type=str, default=None)
parser.add_argument("--wandb_project", type=str, default="lag-llama-test")
parser.add_argument("--wandb_tags", nargs="+")
parser.add_argument(
"--wandb_mode", type=str, default="online", choices=["offline", "online"]
)
# Other arguments
parser.add_argument(
"--evaluate_only", action="store_true", help="Only evaluate, do not train"
)
parser.add_argument(
"--use_kv_cache",
help="KV caching during infernce. Only for Lag-LLama.",
action="store_true",
default=True
)
# SWA arguments
parser.add_argument(
"--swa", action="store_true", help="Using Stochastic Weight Averaging"
)
parser.add_argument("--swa_lrs", type=float, default=1e-2)
parser.add_argument("--swa_epoch_start", type=float, default=0.8)
parser.add_argument("--annealing_epochs", type=int, default=10)
parser.add_argument(
"--annealing_strategy", type=str, default="cos", choices=["cos", "linear"]
)
# Training/validation iterator type switching
parser.add_argument("--use_single_instance_sampler", action="store_true", default=True)
# Plot forecasts
parser.add_argument("--plot_test_forecasts", action="store_true", default=True)
# Search search_batch_size
parser.add_argument("--search_batch_size", action="store_true", default=False)
# Number of validation windows
parser.add_argument("--num_validation_windows", type=int, default=14)
# Training KWARGS
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--weight_decay', type=float, default=1e-8)
# Override arguments with a dictionary file with args
parser.add_argument('--args_from_dict_path', type=str)
# Evaluation utils
parser.add_argument("--eval_prefix", type=str)
# Checkpoints args
parser.add_argument("--ckpt_path", type=str)
parser.add_argument("--get_ckpt_path_from_experiment_name", type=str)
# Single dataset setup: used typically for finetuning
parser.add_argument("--single_dataset", type=str)
parser.add_argument("--use_dataset_prediction_length", action="store_true", default=False)
parser.add_argument("--single_dataset_last_k_percentage", type=float)
# CosineAnnealingLR
parser.add_argument("--use_cosine_annealing_lr", action="store_true", default=False)
parser.add_argument("--cosine_annealing_lr_t_max", type=int, default=10000)
parser.add_argument("--cosine_annealing_lr_eta_min", type=float, default=1e-2)
# Distribution output
parser.add_argument('--distr_output', type=str, default="studentT", choices=["studentT"])
args = parser.parse_args()
if args.args_from_dict_path:
with open(args.args_from_dict_path, "r") as read_file: loaded_args = json.load(read_file)
for key, value in loaded_args.items():
setattr(args, key, value)
# print args for logging
for arg in vars(args):
print(arg, ":", getattr(args, arg))
train(args)