-
Notifications
You must be signed in to change notification settings - Fork 3
/
rasm.py
148 lines (125 loc) · 6.38 KB
/
rasm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from utils import download_url
import argparse
import numpy as np
import PIL.Image
import dnnlib
import dnnlib.tflib as tflib
import re
import sys
from io import BytesIO
import IPython.display
from math import ceil
from PIL import Image, ImageDraw
import os
import pickle
from utils import log_progress, imshow, create_image_grid, show_animation
import imageio
import glob
import gdown
class Rasm:
def __init__(self, mode = 'calligraphy'):
if mode == 'calligraphy':
url = 'https://drive.google.com/uc?id=138fdURGxdkOwZq7IWvnrGLcfo5VI8O1R'
else:
url = 'https://drive.google.com/uc?id=13h-alXGI0hbNOJy1qbmeoroXZSPBHEG2'
output = 'model.pkl'
print('Downloading networks from "%s"...' %url)
gdown.download(url, output, quiet=False)
dnnlib.tflib.init_tf()
with dnnlib.util.open_url(output) as fp:
self._G, self._D, self.Gs = pickle.load(fp)
self.noise_vars = [var for name, var in self.Gs.components.synthesis.vars.items() if name.startswith('noise')]
# Generates a list of images, based on a list of latent vectors (Z), and a list (or a single constant) of truncation_psi's.
def generate_images_in_w_space(self, dlatents, truncation_psi):
Gs_kwargs = dnnlib.EasyDict()
Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
Gs_kwargs.randomize_noise = False
Gs_kwargs.truncation_psi = truncation_psi
# dlatent_avg = self.Gs.get_var('dlatent_avg') # [component]
imgs = []
for _, dlatent in log_progress(enumerate(dlatents), name = "Generating images"):
#row_dlatents = (dlatent[np.newaxis] - dlatent_avg) * np.reshape(truncation_psi, [-1, 1, 1]) + dlatent_avg
# dl = (dlatent-dlatent_avg)*truncation_psi + dlatent_avg
row_images = self.Gs.components.synthesis.run(dlatent, **Gs_kwargs)
imgs.append(PIL.Image.fromarray(row_images[0], 'RGB'))
return imgs
def generate_images(self, zs, truncation_psi, class_idx = None):
Gs_kwargs = dnnlib.EasyDict()
Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
Gs_kwargs.randomize_noise = False
if not isinstance(truncation_psi, list):
truncation_psi = [truncation_psi] * len(zs)
imgs = []
label = np.zeros([1] + self.Gs.input_shapes[1][1:])
if class_idx is not None:
label[:, class_idx] = 1
else:
label = None
for z_idx, z in log_progress(enumerate(zs), size = len(zs), name = "Generating images"):
Gs_kwargs.truncation_psi = truncation_psi[z_idx]
noise_rnd = np.random.RandomState(1) # fix noise
tflib.set_vars({var: noise_rnd.randn(*var.shape.as_list()) for var in self.noise_vars}) # [height, width]
images = self.Gs.run(z, label, **Gs_kwargs) # [minibatch, height, width, channel]
imgs.append(PIL.Image.fromarray(images[0], 'RGB'))
return imgs
def generate_from_zs(self, zs, truncation_psi = 0.5):
Gs_kwargs = dnnlib.EasyDict()
Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
Gs_kwargs.randomize_noise = False
if not isinstance(truncation_psi, list):
truncation_psi = [truncation_psi] * len(zs)
for z_idx, z in log_progress(enumerate(zs), size = len(zs), name = "Generating images"):
Gs_kwargs.truncation_psi = truncation_psi[z_idx]
noise_rnd = np.random.RandomState(1) # fix noise
tflib.set_vars({var: noise_rnd.randn(*var.shape.as_list()) for var in self.noise_vars}) # [height, width]
images = self.Gs.run(z, None, **Gs_kwargs) # [minibatch, height, width, channel]
img = PIL.Image.fromarray(images[0], 'RGB')
imshow(img)
def generate_random_zs(self, size):
seeds = np.random.randint(2**32, size=size)
zs = []
for _, seed in enumerate(seeds):
rnd = np.random.RandomState(seed)
z = rnd.randn(1, *self.Gs.input_shape[1:]) # [minibatch, component]
zs.append(z)
return zs
def generate_zs_from_seeds(self, seeds):
zs = []
for _, seed in enumerate(seeds):
rnd = np.random.RandomState(seed)
z = rnd.randn(1, *self.Gs.input_shape[1:]) # [minibatch, component]
zs.append(z)
return zs
# Generates a list of images, based on a list of seed for latent vectors (Z), and a list (or a single constant) of truncation_psi's.
def generate_images_from_seeds(self, seeds, truncation_psi):
ima = self.generate_images(self.generate_zs_from_seeds(seeds), truncation_psi)[0]
return ima, imshow(ima)
def generate_randomly(self, truncation_psi = 0.5):
ima, dis = self.generate_images_from_seeds(np.random.randint(4294967295, size=1), truncation_psi=truncation_psi)
return ima, dis
def generate_grid(self, truncation_psi = 0.7):
seeds = np.random.randint((2**32 - 1), size=9)
return create_image_grid(self.generate_images(self.generate_zs_from_seeds(seeds), truncation_psi), 0.7 , 3)
def generate_animation(self, size = 9, steps = 10, trunc_psi = 0.5):
seeds = list(np.random.randint((2**32) - 1, size=size))
seeds = seeds + [seeds[0]]
zs = self.generate_zs_from_seeds(seeds)
imgs = self.generate_images(self.interpolate(zs, steps = steps), trunc_psi)
movie_name = 'animation.mp4'
with imageio.get_writer(movie_name, mode='I') as writer:
for image in log_progress(list(imgs), name = "Creating animation"):
writer.append_data(np.array(image))
return show_animation(movie_name)
def convertZtoW(self, latent, truncation_psi=0.7, truncation_cutoff=9):
dlatent = self.Gs.components.mapping.run(latent, None) # [seed, layer, component]
dlatent_avg = self.Gs.get_var('dlatent_avg') # [component]
for i in range(truncation_cutoff):
dlatent[0][i] = (dlatent[0][i]-dlatent_avg)*truncation_psi + dlatent_avg
return dlatent
def interpolate(self, zs, steps = 10):
out = []
for i in range(len(zs)-1):
for index in range(steps):
fraction = index/float(steps)
out.append(zs[i+1]*fraction + zs[i]*(1-fraction))
return out