-
Notifications
You must be signed in to change notification settings - Fork 36
/
Calculus.aux
3854 lines (3854 loc) · 341 KB
/
Calculus.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\relax
\providecommand\zref@newlabel[2]{}
\providecommand\hyper@newdestlabel[2]{}
\providecommand\AtEndDvi@Check{}
\AtEndDvi@Check
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand*\HyPL@Entry[1]{}
\HyPL@Entry{0<</S/r>>}
\@writefile{toc}{\thispagestyle {empty}}
\@writefile{toc}{\contentsline {chapter}{Table of Contents}{iii}{Doc-Start}}
\@writefile{toc}{\contentsline {chapter}{Preface}{vii}{section*.2}}
\HyPL@Entry{10<</S/D>>}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Limits}{1}{chapter.1}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chapter:limits}{{1}{1}{Limits}{chapter.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.1}An Introduction To Limits}{1}{section.1.1}}
\newlabel{sec:limit_intro}{{1.1}{1}{An Introduction To Limits}{section.1.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces $\qopname \relax o{sin}(x)/x$ near $x=1$.\relax }}{2}{figure.caption.3}}
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:zoom_sinx_over_x}{{1.1}{2}{$\sin (x)/x$ near $x=1$.\relax }{figure.caption.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces $\qopname \relax o{sin}(x)/x$ near $x=0$.\relax }}{2}{figure.caption.4}}
\newlabel{fig:sinx_over_x}{{1.2}{2}{$\sin (x)/x$ near $x=0$.\relax }{figure.caption.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces Values of $\qopname \relax o{sin}(x)/x$ with $x$ near 1.\relax }}{2}{figure.caption.5}}
\newlabel{table:sinx_1}{{1.3}{2}{Values of $\sin (x)/x$ with $x$ near 1.\relax }{figure.caption.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces Values of $\qopname \relax o{sin}(x)/x$ with $x$ near 1.\relax }}{3}{figure.caption.6}}
\newlabel{table:sinx_2}{{1.4}{3}{Values of $\sin (x)/x$ with $x$ near 1.\relax }{figure.caption.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.5}{\ignorespaces Graphically approximating a limit in Example \ref {ex_limit1}.\relax }}{3}{figure.caption.7}}
\newlabel{fig:limit1}{{1.5}{3}{Graphically approximating a limit in Example \ref {ex_limit1}.\relax }{figure.caption.7}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.6}{\ignorespaces Numerically approximating a limit in Example \ref {ex_limit1}.\relax }}{3}{figure.caption.8}}
\newlabel{table:limit1}{{1.6}{3}{Numerically approximating a limit in Example \ref {ex_limit1}.\relax }{figure.caption.8}{}}
\pgfsyspdfmark {pgfid1}{4474142}{32977017}
\newlabel{ex_limit1}{{1}{3}{An Introduction To Limits}{examplecounter.1}{}}
\newlabel{eex_limit1}{{1.1}{3}{An Introduction To Limits}{examplecounter.1}{}}
\pgfsyspdfmark {pgfid2}{5719326}{19070066}
\@writefile{lof}{\contentsline {figure}{\numberline {1.7}{\ignorespaces Graphically approximating a limit in Example \ref {ex_limit2}.\relax }}{4}{figure.caption.9}}
\newlabel{fig:limit2}{{1.7}{4}{Graphically approximating a limit in Example \ref {ex_limit2}.\relax }{figure.caption.9}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.8}{\ignorespaces Numerically approximating a limit in Example \ref {ex_limit2}.\relax }}{4}{figure.caption.10}}
\newlabel{table:limit2}{{1.8}{4}{Numerically approximating a limit in Example \ref {ex_limit2}.\relax }{figure.caption.10}{}}
\pgfsyspdfmark {pgfid3}{14288487}{37432541}
\newlabel{ex_limit2}{{2}{4}{An Introduction To Limits}{examplecounter.2}{}}
\newlabel{eex_limit2}{{1.1}{4}{An Introduction To Limits}{examplecounter.2}{}}
\pgfsyspdfmark {pgfid4}{22733777}{24443020}
\@writefile{lof}{\contentsline {figure}{\numberline {1.9}{\ignorespaces Observing no limit as $x\to 1$ in Example \ref {ex_no_limit1}.\relax }}{5}{figure.caption.11}}
\newlabel{fig:nolimit1}{{1.9}{5}{Observing no limit as $x\to 1$ in Example \ref {ex_no_limit1}.\relax }{figure.caption.11}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.10}{\ignorespaces Values of $f(x)$ near $x=1$ in Example \ref {ex_no_limit1}.\relax }}{5}{figure.caption.12}}
\newlabel{table:nolimit1}{{1.10}{5}{Values of $f(x)$ near $x=1$ in Example \ref {ex_no_limit1}.\relax }{figure.caption.12}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.11}{\ignorespaces Observing no limit as $x\to 1$ in Example \ref {ex_no_limit2}.\relax }}{5}{figure.caption.13}}
\newlabel{fig:nolimit2}{{1.11}{5}{Observing no limit as $x\to 1$ in Example \ref {ex_no_limit2}.\relax }{figure.caption.13}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.12}{\ignorespaces Values of $f(x)$ near $x=1$ in Example \ref {ex_no_limit2}.\relax }}{5}{figure.caption.14}}
\newlabel{table:nolimit2}{{1.12}{5}{Values of $f(x)$ near $x=1$ in Example \ref {ex_no_limit2}.\relax }{figure.caption.14}{}}
\pgfsyspdfmark {pgfid5}{4474142}{44512051}
\newlabel{ex_no_limit1}{{3}{5}{An Introduction To Limits}{examplecounter.3}{}}
\newlabel{eex_no_limit1}{{1.1}{5}{An Introduction To Limits}{examplecounter.3}{}}
\pgfsyspdfmark {pgfid6}{16395164}{32864954}
\pgfsyspdfmark {pgfid7}{4474142}{31455930}
\newlabel{ex_no_limit2}{{4}{5}{An Introduction To Limits}{examplecounter.4}{}}
\newlabel{eex_no_limit2}{{1.1}{5}{An Introduction To Limits}{examplecounter.4}{}}
\pgfsyspdfmark {pgfid8}{8796232}{19173126}
\pgfsyspdfmark {pgfid9}{4474142}{17764102}
\newlabel{ex_no_limit3}{{5}{5}{An Introduction To Limits}{examplecounter.5}{}}
\pgfsyspdfmark {pgfid10}{9979166}{17600262}
\@writefile{lof}{\contentsline {figure}{\numberline {1.14}{\ignorespaces Interpreting a difference quotient as the slope of a secant line.\relax }}{6}{figure.caption.16}}
\newlabel{fig:diffquot1}{{1.14}{6}{Interpreting a difference quotient as the slope of a secant line.\relax }{figure.caption.16}{}}
\newlabel{eex_no_limit3}{{1.1}{6}{An Introduction To Limits}{figure.caption.14}{}}
\pgfsyspdfmark {pgfid11}{22811571}{41059970}
\@writefile{lof}{\contentsline {figure}{\numberline {1.13}{\ignorespaces Observing that $f(x) = \qopname \relax o{sin}(1/x)$ has no limit as $x\to 0$ in Example \ref {ex_no_limit3}.\relax }}{6}{figure.caption.15}}
\newlabel{fig:nolimit3}{{1.13}{6}{Observing that $f(x) = \sin (1/x)$ has no limit as $x\to 0$ in Example \ref {ex_no_limit3}.\relax }{figure.caption.15}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.15}{\ignorespaces Secant lines of $f(x)$ at $x=1$ and $x=1+h$, for shrinking values of $h$ (i.e., $h\rightarrow 0$).\relax }}{7}{figure.caption.17}}
\newlabel{fig:diff_quot_small_h}{{1.15}{7}{Secant lines of $f(x)$ at $x=1$ and $x=1+h$, for shrinking values of $h$ (i.e., $h\rightarrow 0$).\relax }{figure.caption.17}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.16}{\ignorespaces The difference quotient evaluated at values of $h$ near 0.\relax }}{7}{figure.caption.18}}
\newlabel{table:diff_quot_smallh}{{1.16}{7}{The difference quotient evaluated at values of $h$ near 0.\relax }{figure.caption.18}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.2}Epsilon-Delta Definition of a Limit}{9}{section.1.2}}
\newlabel{sec:limit_def}{{1.2}{9}{Epsilon-Delta Definition of a Limit}{section.1.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.17}{\ignorespaces Illustrating the ${"ε}-{"δ}$ process.\relax }}{10}{figure.caption.19}}
\newlabel{fig:choose_e_d}{{1.17}{10}{Illustrating the $\epsilon -\delta $ process.\relax }{figure.caption.19}{}}
\newlabel{def:limit}{{1}{10}{Epsilon-Delta Definition of a Limit}{definitioncounter.1}{}}
\pgfsyspdfmark {pgfid13}{14288487}{28593580}
\newlabel{ex_compute_lim1}{{6}{10}{Epsilon-Delta Definition of a Limit}{examplecounter.6}{}}
\pgfsyspdfmark {pgfid14}{19793511}{28429740}
\newlabel{eex_compute_lim1}{{1}{11}{Epsilon-Delta Definition of a Limit}{figure.caption.19}{}}
\pgfsyspdfmark {pgfid15}{12999172}{14995292}
\pgfsyspdfmark {pgfid16}{14288487}{39718586}
\newlabel{ex_compute_lim2}{{7}{12}{Epsilon-Delta Definition of a Limit}{examplecounter.7}{}}
\pgfsyspdfmark {pgfid17}{19793511}{39554746}
\newlabel{eq:limit1}{{1.1}{12}{Epsilon-Delta Definition of a Limit}{equation.1.2.1}{}}
\newlabel{eq:limit2}{{1.2}{12}{Epsilon-Delta Definition of a Limit}{equation.1.2.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.18}{\ignorespaces Choosing ${"δ}= {"ε}/5$ in Example \ref {ex_compute_lim2}.\relax }}{13}{figure.caption.20}}
\newlabel{fig:limit_eover5}{{1.18}{13}{Choosing $\delta = \epsilon /5$ in Example \ref {ex_compute_lim2}.\relax }{figure.caption.20}{}}
\newlabel{eex_compute_lim2}{{1}{13}{Epsilon-Delta Definition of a Limit}{equation.1.2.2}{}}
\pgfsyspdfmark {pgfid18}{10116756}{28789528}
\pgfsyspdfmark {pgfid19}{14288487}{45207188}
\newlabel{ex_compute_lim4}{{8}{14}{Epsilon-Delta Definition of a Limit}{examplecounter.8}{}}
\pgfsyspdfmark {pgfid20}{19793511}{45043348}
\newlabel{eq:lim4}{{1.3}{14}{Epsilon-Delta Definition of a Limit}{equation.1.2.3}{}}
\newlabel{eq:lim4b}{{1.4}{14}{Epsilon-Delta Definition of a Limit}{equation.1.2.4}{}}
\newlabel{eex_compute_lim4}{{1}{15}{Epsilon-Delta Definition of a Limit}{equation.1.2.4}{}}
\pgfsyspdfmark {pgfid21}{20553833}{37692306}
\pgfsyspdfmark {pgfid22}{4474142}{34710418}
\newlabel{ex_compute_lim3}{{9}{15}{Epsilon-Delta Definition of a Limit}{examplecounter.9}{}}
\pgfsyspdfmark {pgfid23}{9979166}{34546578}
\newlabel{eex_compute_lim3}{{1}{16}{Epsilon-Delta Definition of a Limit}{examplecounter.9}{}}
\pgfsyspdfmark {pgfid24}{29748938}{40252211}
\@writefile{toc}{\contentsline {section}{\numberline {1.3}Finding Limits Analytically}{18}{section.1.3}}
\newlabel{sec:limit_analytically}{{1.3}{18}{Finding Limits Analytically}{section.1.3}{}}
\newlabel{thm:limit_algebra}{{1}{18}{Finding Limits Analytically}{theoremcounter.1}{}}
\pgfsyspdfmark {pgfid26}{4474142}{42844509}
\newlabel{ex_basic_limit_1}{{10}{19}{Finding Limits Analytically}{examplecounter.10}{}}
\newlabel{eex_basic_limit_1}{{1}{19}{Finding Limits Analytically}{Item.58}{}}
\pgfsyspdfmark {pgfid27}{4736286}{21313689}
\newlabel{thm:poly_rat}{{2}{20}{Finding Limits Analytically}{theoremcounter.2}{}}
\pgfsyspdfmark {pgfid29}{14288487}{39023101}
\newlabel{ex_limit_rat}{{11}{20}{Finding Limits Analytically}{examplecounter.11}{}}
\newlabel{eex_limit_rat}{{2}{20}{Finding Limits Analytically}{examplecounter.11}{}}
\pgfsyspdfmark {pgfid30}{15533671}{31447202}
\newlabel{thm:lim_continuous}{{3}{20}{Finding Limits Analytically}{theoremcounter.3}{}}
\pgfsyspdfmark {pgfid32}{4474142}{46871347}
\newlabel{ex_limit_1}{{12}{21}{Finding Limits Analytically}{examplecounter.12}{}}
\pgfsyspdfmark {pgfid33}{9979166}{46707507}
\newlabel{eex_limit_1}{{2}{22}{Finding Limits Analytically}{Item.79}{}}
\pgfsyspdfmark {pgfid34}{14550631}{41635934}
\newlabel{thm:sqz}{{4}{22}{Finding Limits Analytically}{theoremcounter.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.19}{\ignorespaces The unit circle and related triangles.\relax }}{23}{figure.caption.21}}
\newlabel{fig:squeeze_sinx}{{1.19}{23}{The unit circle and related triangles.\relax }{figure.caption.21}{}}
\pgfsyspdfmark {pgfid36}{4474142}{46871347}
\newlabel{ex_limit_sinx_prove}{{13}{23}{Finding Limits Analytically}{examplecounter.13}{}}
\pgfsyspdfmark {pgfid37}{9979166}{46707507}
\newlabel{eex_limit_sinx_prove}{{4}{24}{Finding Limits Analytically}{figure.caption.21}{}}
\pgfsyspdfmark {pgfid38}{14550631}{42058969}
\newlabel{thm:special_limits}{{5}{24}{Finding Limits Analytically}{theoremcounter.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.20}{\ignorespaces Graphing $f$ in Example \ref {ex_limit_onept} to understand a limit.\relax }}{25}{figure.caption.22}}
\newlabel{fig:limitxplus1}{{1.20}{25}{Graphing $f$ in Example \ref {ex_limit_onept} to understand a limit.\relax }{figure.caption.22}{}}
\pgfsyspdfmark {pgfid40}{4474142}{43530877}
\newlabel{ex_limit_onept}{{14}{25}{Finding Limits Analytically}{examplecounter.14}{}}
\newlabel{eex_limit_onept}{{5}{25}{Finding Limits Analytically}{examplecounter.14}{}}
\pgfsyspdfmark {pgfid41}{5719326}{18238391}
\newlabel{thm:limit_allbut1}{{6}{26}{Finding Limits Analytically}{theoremcounter.6}{}}
\pgfsyspdfmark {pgfid43}{14288487}{34574749}
\newlabel{ex_limit_allbut1}{{15}{26}{Finding Limits Analytically}{examplecounter.15}{}}
\newlabel{eex_limit_allbut1}{{6}{26}{Finding Limits Analytically}{examplecounter.15}{}}
\pgfsyspdfmark {pgfid44}{15533671}{19523106}
\pgfsyspdfmark {pgfid45}{4474142}{46871347}
\newlabel{ex_limit_diffquot}{{16}{27}{Finding Limits Analytically}{examplecounter.16}{}}
\newlabel{eex_limit_diffquot}{{6}{27}{Finding Limits Analytically}{examplecounter.16}{}}
\pgfsyspdfmark {pgfid46}{17064072}{30445788}
\@writefile{toc}{\contentsline {section}{\numberline {1.4}One Sided Limits}{30}{section.1.4}}
\newlabel{sec:limit_continuity}{{1.4}{30}{One Sided Limits}{section.1.4}{}}
\newlabel{def:onesidedlimit}{{2}{30}{One Sided Limits}{definitioncounter.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.21}{\ignorespaces A graph of $f$ in Example \ref {ex_onesidea}.\relax }}{31}{figure.caption.23}}
\newlabel{fig:onesided1}{{1.21}{31}{A graph of $f$ in Example \ref {ex_onesidea}.\relax }{figure.caption.23}{}}
\pgfsyspdfmark {pgfid48}{4474142}{38220595}
\newlabel{ex_onesidea}{{17}{31}{One Sided Limits}{examplecounter.17}{}}
\pgfsyspdfmark {pgfid49}{9979166}{38056755}
\@writefile{lof}{\contentsline {figure}{\numberline {1.22}{\ignorespaces A graph of $f$ from Example \ref {ex_onesideb}\relax }}{32}{figure.caption.24}}
\newlabel{fig:onesidedb}{{1.22}{32}{A graph of $f$ from Example \ref {ex_onesideb}\relax }{figure.caption.24}{}}
\newlabel{eex_onesidea}{{2}{32}{One Sided Limits}{Item.145}{}}
\pgfsyspdfmark {pgfid50}{14550631}{42664197}
\newlabel{thm:leftrightlimits}{{7}{32}{One Sided Limits}{theoremcounter.7}{}}
\pgfsyspdfmark {pgfid52}{14288487}{22786900}
\newlabel{ex_onesideb}{{18}{32}{One Sided Limits}{examplecounter.18}{}}
\pgfsyspdfmark {pgfid53}{19793511}{22623060}
\@writefile{lof}{\contentsline {figure}{\numberline {1.23}{\ignorespaces Graphing $f$ in Example \ref {ex_onesidec}\relax }}{33}{figure.caption.25}}
\newlabel{fig:onesidedc}{{1.23}{33}{Graphing $f$ in Example \ref {ex_onesidec}\relax }{figure.caption.25}{}}
\newlabel{eex_onesideb}{{7}{33}{One Sided Limits}{Item.161}{}}
\pgfsyspdfmark {pgfid54}{4736286}{29629378}
\pgfsyspdfmark {pgfid55}{4474142}{28198363}
\newlabel{ex_onesidec}{{19}{33}{One Sided Limits}{examplecounter.19}{}}
\newlabel{eex_onesidec}{{7}{33}{One Sided Limits}{Item.165}{}}
\pgfsyspdfmark {pgfid56}{5719326}{18049265}
\pgfsyspdfmark {pgfid57}{4474142}{16618250}
\newlabel{ex_onesided}{{20}{33}{One Sided Limits}{examplecounter.20}{}}
\pgfsyspdfmark {pgfid58}{9979166}{16454410}
\@writefile{lof}{\contentsline {figure}{\numberline {1.24}{\ignorespaces Graphing $f$ in Example \ref {ex_onesided}\relax }}{34}{figure.caption.26}}
\newlabel{fig:onesidedd}{{1.24}{34}{Graphing $f$ in Example \ref {ex_onesided}\relax }{figure.caption.26}{}}
\newlabel{eex_onesided}{{7}{34}{One Sided Limits}{figure.caption.25}{}}
\pgfsyspdfmark {pgfid59}{14550631}{38847091}
\@writefile{lof}{\contentsline {figure}{\numberline {1.25}{\ignorespaces A graph of $f$ in Example \ref {ex_contint1}.\relax }}{37}{figure.caption.27}}
\newlabel{fig_continuous1}{{1.25}{37}{A graph of $f$ in Example \ref {ex_contint1}.\relax }{figure.caption.27}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.5}Continuity}{37}{section.1.5}}
\newlabel{sec:continuity}{{1.5}{37}{Continuity}{section.1.5}{}}
\newlabel{def:continuous}{{3}{37}{Continuity}{definitioncounter.3}{}}
\pgfsyspdfmark {pgfid61}{4474142}{25923338}
\newlabel{ex_contint1}{{21}{37}{Continuity}{examplecounter.21}{}}
\newlabel{eex_contint1}{{3}{37}{Continuity}{Item.285}{}}
\pgfsyspdfmark {pgfid62}{16161168}{14995292}
\@writefile{lof}{\contentsline {figure}{\numberline {1.26}{\ignorespaces A graph of the step function in Example \ref {ex_contint2}.\relax }}{38}{figure.caption.28}}
\newlabel{fig:continuous2}{{1.26}{38}{A graph of the step function in Example \ref {ex_contint2}.\relax }{figure.caption.28}{}}
\pgfsyspdfmark {pgfid63}{14288487}{46871347}
\newlabel{ex_contint2}{{22}{38}{Continuity}{examplecounter.22}{}}
\newlabel{eex_contint2}{{3}{38}{Continuity}{Item.288}{}}
\pgfsyspdfmark {pgfid64}{15533671}{30097854}
\newlabel{def:closed_continuity}{{4}{38}{Continuity}{definitioncounter.4}{}}
\pgfsyspdfmark {pgfid66}{4474142}{46871347}
\newlabel{ex_cont_funct1}{{23}{39}{Continuity}{examplecounter.23}{}}
\newlabel{eex_cont_funct1}{{4}{39}{Continuity}{Item.301}{}}
\pgfsyspdfmark {pgfid67}{4736286}{20593803}
\newlabel{thm:continuity_algebra}{{8}{40}{Continuity}{theoremcounter.8}{}}
\newlabel{thm:continuous_functions}{{9}{40}{Continuity}{theoremcounter.9}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.27}{\ignorespaces A graph of $f$ in Example \ref {ex_cont_funct}(a).\relax }}{41}{figure.caption.29}}
\newlabel{fig_continuous3}{{1.27}{41}{A graph of $f$ in Example \ref {ex_cont_funct}(a).\relax }{figure.caption.29}{}}
\pgfsyspdfmark {pgfid70}{4474142}{46871347}
\newlabel{ex_cont_funct}{{24}{41}{Continuity}{examplecounter.24}{}}
\newlabel{eex_cont_funct}{{9}{41}{Continuity}{Item.325}{}}
\pgfsyspdfmark {pgfid71}{4736286}{23724227}
\newlabel{thm:IVT}{{10}{42}{Continuity}{theoremcounter.10}{}}
\pgfsyspdfmark {pgfid73}{14288487}{16747121}
\newlabel{ex_bisect_method}{{25}{42}{Continuity}{examplecounter.25}{}}
\pgfsyspdfmark {pgfid74}{19793511}{16583281}
\@writefile{lof}{\contentsline {figure}{\numberline {1.28}{\ignorespaces Graphing a root of $f(x) = x-\qopname \relax o{cos}x$.\relax }}{43}{figure.caption.30}}
\newlabel{fig:xminuscosx}{{1.28}{43}{Graphing a root of $f(x) = x-\cos x$.\relax }{figure.caption.30}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.29}{\ignorespaces Iterations of the Bisection Method of Root Finding\relax }}{43}{figure.caption.31}}
\newlabel{table:rootfinding}{{1.29}{43}{Iterations of the Bisection Method of Root Finding\relax }{figure.caption.31}{}}
\newlabel{eex_bisect_method}{{10}{43}{Continuity}{examplecounter.25}{}}
\pgfsyspdfmark {pgfid75}{10336072}{25473843}
\@writefile{lof}{\contentsline {figure}{\numberline {1.30}{\ignorespaces Graphing $f(x) = 1/x^2$ for values of $x$ near 0.\relax }}{46}{figure.caption.32}}
\newlabel{fig:oneoverxsquared}{{1.30}{46}{Graphing $f(x) = 1/x^2$ for values of $x$ near 0.\relax }{figure.caption.32}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.31}{\ignorespaces Observing infinite limit as $x\to 1$ in Example \ref {ex_inflim1}.\relax }}{46}{figure.caption.33}}
\newlabel{fig:inflim1}{{1.31}{46}{Observing infinite limit as $x\to 1$ in Example \ref {ex_inflim1}.\relax }{figure.caption.33}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.6}Limits Involving Infinity}{46}{section.1.6}}
\newlabel{sec:limits_infty}{{1.6}{46}{Limits Involving Infinity}{section.1.6}{}}
\newlabel{def:limit_of_infinity}{{5}{46}{Limits Involving Infinity}{definitioncounter.5}{}}
\pgfsyspdfmark {pgfid77}{14288487}{18116117}
\newlabel{ex_inflim1}{{26}{46}{Limits Involving Infinity}{examplecounter.26}{}}
\pgfsyspdfmark {pgfid78}{19793511}{17952277}
\@writefile{lof}{\contentsline {figure}{\numberline {1.32}{\ignorespaces Evaluating $\displaystyle \qopname \relax m{lim}_{x\rightarrow 0}\frac 1x$.\relax }}{47}{figure.caption.34}}
\newlabel{fig:oneoverx}{{1.32}{47}{Evaluating $\ds \lim _{x\rightarrow 0}\frac 1x$.\relax }{figure.caption.34}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.33}{\ignorespaces Graphing $f(x) = \genfrac {}{}{}0{3x}{x^2-4}$.\relax }}{47}{figure.caption.35}}
\newlabel{fig:multipleasymptotes}{{1.33}{47}{Graphing $f(x) = \dfrac {3x}{x^2-4}$.\relax }{figure.caption.35}{}}
\newlabel{eex_inflim1}{{5}{47}{Limits Involving Infinity}{figure.caption.33}{}}
\pgfsyspdfmark {pgfid79}{23845355}{37262267}
\pgfsyspdfmark {pgfid80}{4474142}{35853243}
\newlabel{ex_inflim2}{{27}{47}{Limits Involving Infinity}{examplecounter.27}{}}
\newlabel{eex_inflim2}{{5}{47}{Limits Involving Infinity}{examplecounter.27}{}}
\pgfsyspdfmark {pgfid81}{5719326}{28855477}
\pgfsyspdfmark {pgfid82}{4474142}{23514293}
\newlabel{ex_vertasy1}{{28}{47}{Limits Involving Infinity}{examplecounter.28}{}}
\newlabel{eex_vertasy1}{{5}{47}{Limits Involving Infinity}{examplecounter.28}{}}
\pgfsyspdfmark {pgfid83}{5719326}{14995292}
\@writefile{lof}{\contentsline {figure}{\numberline {1.34}{\ignorespaces Graphically showing that $f(x) = \genfrac {}{}{}0{x^2-1}{x-1}$ does not have an asymptote at $x=1$.\relax }}{48}{figure.caption.36}}
\newlabel{fig:noasy}{{1.34}{48}{Graphically showing that $f(x) = \dfrac {x^2-1}{x-1}$ does not have an asymptote at $x=1$.\relax }{figure.caption.36}{}}
\newlabel{def:limit_at_infinity}{{6}{49}{Limits Involving Infinity}{definitioncounter.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.35}{\ignorespaces Using a graph and a table to approximate a horizontal asymptote in Example \ref {ex_hzasy1}.\relax }}{50}{figure.caption.38}}
\newlabel{fig:hzasy1}{{1.35}{50}{Using a graph and a table to approximate a horizontal asymptote in Example \ref {ex_hzasy1}.\relax }{figure.caption.38}{}}
\pgfsyspdfmark {pgfid85}{14288487}{46871347}
\newlabel{ex_hzasy1}{{29}{50}{Limits Involving Infinity}{examplecounter.29}{}}
\newlabel{eex_hzasy1}{{6}{50}{Limits Involving Infinity}{examplecounter.29}{}}
\pgfsyspdfmark {pgfid86}{29853351}{36666051}
\@writefile{lof}{\contentsline {figure}{\numberline {1.36}{\ignorespaces Considering different types of horizontal asymptotes.\relax }}{50}{figure.caption.37}}
\newlabel{fig:hzasy}{{1.36}{50}{Considering different types of horizontal asymptotes.\relax }{figure.caption.37}{}}
\newlabel{thm:lim_rational_fn_at_infty}{{11}{51}{Limits Involving Infinity}{theoremcounter.11}{}}
\pgfsyspdfmark {pgfid88}{14288487}{20265115}
\newlabel{ex_hzasy2}{{30}{52}{Limits Involving Infinity}{examplecounter.30}{}}
\pgfsyspdfmark {pgfid89}{19793511}{20101275}
\@writefile{lof}{\contentsline {figure}{\numberline {1.37}{\ignorespaces Visualizing the functions in Example \ref {ex_hzasy3}.\relax }}{53}{figure.caption.39}}
\newlabel{fig:hzasy3}{{1.37}{53}{Visualizing the functions in Example \ref {ex_hzasy3}.\relax }{figure.caption.39}{}}
\newlabel{eex_hzasy2}{{11}{53}{Limits Involving Infinity}{examplecounter.30}{}}
\pgfsyspdfmark {pgfid90}{25707806}{37988523}
\pgfsyspdfmark {pgfid91}{4474142}{36579499}
\newlabel{ex_hzasy3}{{31}{53}{Limits Involving Infinity}{examplecounter.31}{}}
\newlabel{eex_hzasy3}{{11}{53}{Limits Involving Infinity}{Item.400}{}}
\pgfsyspdfmark {pgfid92}{4736286}{19420925}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Derivatives}{57}{chapter.2}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chapter:derivatives}{{2}{57}{Derivatives}{chapter.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Instantaneous Rates of Change: The Derivative}{57}{section.2.1}}
\newlabel{sec:derivative}{{2.1}{57}{Instantaneous Rates of Change: The Derivative}{section.2.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Approximating the instantaneous velocity with average velocities over a small time period $h$.\relax }}{58}{figure.caption.40}}
\newlabel{table:falling}{{2.1}{58}{Approximating the instantaneous velocity with average velocities over a small time period $h$.\relax }{figure.caption.40}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Parts (a), (b) and (c) show the secant line to $f(x)$ with $h=1$, zoomed in different amounts. Part (d) shows the tangent line to $f$ at $x=2$.\relax }}{59}{figure.caption.41}}
\newlabel{fig:derivfalling}{{2.2}{59}{Parts (a), (b) and (c) show the secant line to $f(x)$ with $h=1$, zoomed in different amounts. Part (d) shows the tangent line to $f$ at $x=2$.\relax }{figure.caption.41}{}}
\newlabel{def:derivative_at_a_point}{{7}{60}{Instantaneous Rates of Change: The Derivative}{definitioncounter.7}{}}
\newlabel{def:tangent_line}{{8}{60}{Instantaneous Rates of Change: The Derivative}{definitioncounter.8}{}}
\pgfsyspdfmark {pgfid95}{14288487}{28125476}
\newlabel{ex_derv_point1}{{32}{60}{Instantaneous Rates of Change: The Derivative}{examplecounter.32}{}}
\pgfsyspdfmark {pgfid96}{19793511}{27961636}
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces A graph of $f(x) = 3x^2+5x-7$ and its tangent lines at $x=1$ and $x=3$.\relax }}{61}{figure.caption.42}}
\newlabel{fig:tangent1}{{2.3}{61}{A graph of $f(x) = 3x^2+5x-7$ and its tangent lines at $x=1$ and $x=3$.\relax }{figure.caption.42}{}}
\newlabel{eex_derv_point1}{{8}{61}{Instantaneous Rates of Change: The Derivative}{Item.462}{}}
\pgfsyspdfmark {pgfid97}{6589078}{31387990}
\newlabel{def:normal_line}{{9}{61}{Instantaneous Rates of Change: The Derivative}{definitioncounter.9}{}}
\pgfsyspdfmark {pgfid99}{4474142}{17518720}
\newlabel{ex_normal1}{{33}{61}{Instantaneous Rates of Change: The Derivative}{examplecounter.33}{}}
\pgfsyspdfmark {pgfid100}{9979166}{17354880}
\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces A graph of $f(x)=3x^2+5x-7$, along with its normal line at $x=1$.\relax }}{62}{figure.caption.43}}
\newlabel{fig:normal1}{{2.4}{62}{A graph of $f(x)=3x^2+5x-7$, along with its normal line at $x=1$.\relax }{figure.caption.43}{}}
\newlabel{eex_normal1}{{9}{62}{Instantaneous Rates of Change: The Derivative}{figure.caption.42}{}}
\pgfsyspdfmark {pgfid101}{15533671}{36040442}
\pgfsyspdfmark {pgfid102}{14288487}{25980666}
\newlabel{ex_der_line}{{34}{62}{Instantaneous Rates of Change: The Derivative}{examplecounter.34}{}}
\pgfsyspdfmark {pgfid103}{19793511}{25816826}
\@writefile{lof}{\contentsline {figure}{\numberline {2.5}{\ignorespaces $f(x) = \qopname \relax o{sin}x$ graphed with an approximation to its tangent line at $x=0$.\relax }}{63}{figure.caption.44}}
\newlabel{fig:tangentsinx}{{2.5}{63}{$f(x) = \sin x$ graphed with an approximation to its tangent line at $x=0$.\relax }{figure.caption.44}{}}
\newlabel{eex_der_line}{{9}{63}{Instantaneous Rates of Change: The Derivative}{figure.caption.43}{}}
\pgfsyspdfmark {pgfid104}{14322838}{40278111}
\pgfsyspdfmark {pgfid105}{4474142}{34798987}
\newlabel{ex_der_num_approx}{{35}{63}{Instantaneous Rates of Change: The Derivative}{examplecounter.35}{}}
\newlabel{eex_der_num_approx}{{9}{63}{Instantaneous Rates of Change: The Derivative}{examplecounter.35}{}}
\pgfsyspdfmark {pgfid106}{12805192}{20987510}
\newlabel{def:the_derivative}{{10}{64}{Instantaneous Rates of Change: The Derivative}{definitioncounter.10}{}}
\pgfsyspdfmark {pgfid110}{14288487}{15159132}
\newlabel{ex_deriv1}{{36}{64}{Instantaneous Rates of Change: The Derivative}{examplecounter.36}{}}
\pgfsyspdfmark {pgfid111}{19793511}{14995292}
\newlabel{eex_deriv1}{{10}{65}{Instantaneous Rates of Change: The Derivative}{examplecounter.36}{}}
\pgfsyspdfmark {pgfid112}{17744327}{36597713}
\pgfsyspdfmark {pgfid113}{4474142}{35165929}
\newlabel{ex_deriv2}{{37}{65}{Instantaneous Rates of Change: The Derivative}{examplecounter.37}{}}
\pgfsyspdfmark {pgfid114}{9979166}{35002089}
\@writefile{lof}{\contentsline {figure}{\numberline {2.6}{\ignorespaces The absolute value function, $f(x) = |x|$. Notice how the slope of the lines (and hence the tangent lines) abruptly changes at $x=0$.\relax }}{66}{figure.caption.45}}
\newlabel{fig:absolutevalue}{{2.6}{66}{The absolute value function, $f(x) = |x|$. Notice how the slope of the lines (and hence the tangent lines) abruptly changes at $x=0$.\relax }{figure.caption.45}{}}
\newlabel{eex_deriv2}{{10}{66}{Instantaneous Rates of Change: The Derivative}{examplecounter.37}{}}
\pgfsyspdfmark {pgfid115}{15533671}{44070617}
\pgfsyspdfmark {pgfid116}{14288487}{42661593}
\newlabel{ex_deriv_sinx}{{38}{66}{Instantaneous Rates of Change: The Derivative}{examplecounter.38}{}}
\newlabel{eex_deriv_sinx}{{10}{66}{Instantaneous Rates of Change: The Derivative}{examplecounter.38}{}}
\pgfsyspdfmark {pgfid117}{26440647}{23289181}
\pgfsyspdfmark {pgfid118}{14288487}{21880157}
\newlabel{ex_not_diff}{{39}{66}{Instantaneous Rates of Change: The Derivative}{examplecounter.39}{}}
\pgfsyspdfmark {pgfid119}{19793511}{21716317}
\@writefile{lof}{\contentsline {figure}{\numberline {2.7}{\ignorespaces A graph of the derivative of $f(x) = |x|$.\relax }}{67}{figure.caption.46}}
\newlabel{fig:absolutevalueprime}{{2.7}{67}{A graph of the derivative of $f(x) = |x|$.\relax }{figure.caption.46}{}}
\newlabel{eex_not_diff}{{10}{67}{Instantaneous Rates of Change: The Derivative}{figure.caption.45}{}}
\pgfsyspdfmark {pgfid120}{19039214}{20362833}
\pgfsyspdfmark {pgfid121}{4474142}{15800394}
\newlabel{ex_diff_piecewise}{{40}{67}{Instantaneous Rates of Change: The Derivative}{examplecounter.40}{}}
\pgfsyspdfmark {pgfid122}{9979166}{15636554}
\@writefile{lof}{\contentsline {figure}{\numberline {2.8}{\ignorespaces A graph of $f(x)$ as defined in Example \ref {ex_diff_piecewise}.\relax }}{68}{figure.caption.47}}
\newlabel{fig:piecewisesinx1}{{2.8}{68}{A graph of $f(x)$ as defined in Example \ref {ex_diff_piecewise}.\relax }{figure.caption.47}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.9}{\ignorespaces A graph of $\ensuremath {f\tmspace +\thinmuskip {.1667em}'}(x)$ in Example \ref {ex_diff_piecewise}.\relax }}{68}{figure.caption.48}}
\newlabel{fig:piecewisecosx1}{{2.9}{68}{A graph of $\fp (x)$ in Example \ref {ex_diff_piecewise}.\relax }{figure.caption.48}{}}
\newlabel{eex_diff_piecewise}{{10}{68}{Instantaneous Rates of Change: The Derivative}{figure.caption.46}{}}
\pgfsyspdfmark {pgfid123}{25869457}{23288727}
\newlabel{exer:02_01_10}{{6}{69}{Instantaneous Rates of Change: The Derivative}{Item.468}{}}
\newlabel{exer:02_01_16}{{12}{69}{Instantaneous Rates of Change: The Derivative}{Item.474}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Interpretations of the Derivative}{71}{section.2.2}}
\newlabel{sec:interp_deriv}{{2.2}{71}{Interpretations of the Derivative}{section.2.2}{}}
\pgfsyspdfmark {pgfid124}{14288487}{34092344}
\newlabel{ex_der_meaning1}{{41}{72}{Interpretations of the Derivative}{examplecounter.41}{}}
\newlabel{eex_der_meaning1}{{2.2}{72}{Interpretations of the Derivative}{examplecounter.41}{}}
\pgfsyspdfmark {pgfid125}{35522151}{29209912}
\pgfsyspdfmark {pgfid126}{14288487}{27760764}
\newlabel{ex_der_meaning2}{{42}{72}{Interpretations of the Derivative}{examplecounter.42}{}}
\newlabel{eex_der_meaning2}{{2.2}{72}{Interpretations of the Derivative}{examplecounter.42}{}}
\pgfsyspdfmark {pgfid127}{32569937}{13422428}
\@writefile{lof}{\contentsline {figure}{\numberline {2.10}{\ignorespaces A graph of $f(x)=x^2$.\relax }}{74}{figure.caption.49}}
\newlabel{fig:xsquared}{{2.10}{74}{A graph of $f(x)=x^2$.\relax }{figure.caption.49}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.11}{\ignorespaces A graph of $f(x)=x^2$ and tangent lines.\relax }}{74}{figure.caption.50}}
\newlabel{fig:xsquaredwithgrid}{{2.11}{74}{A graph of $f(x)=x^2$ and tangent lines.\relax }{figure.caption.50}{}}
\newlabel{idea:motion}{{1}{74}{Interpretations of the Derivative}{keyideacounter.1}{}}
\pgfsyspdfmark {pgfid129}{14288487}{22426534}
\newlabel{ex_der_meaning3}{{43}{74}{Interpretations of the Derivative}{examplecounter.43}{}}
\pgfsyspdfmark {pgfid130}{19793511}{22262694}
\@writefile{lof}{\contentsline {figure}{\numberline {2.12}{\ignorespaces Graphs of $f$ and $\ensuremath {f\tmspace +\thinmuskip {.1667em}'}$ in Example \ref {ex_der_meaning4}, along with tangent lines in (b).\relax }}{75}{figure.caption.51}}
\newlabel{fig:fwithderiv}{{2.12}{75}{Graphs of $f$ and $\fp $ in Example \ref {ex_der_meaning4}, along with tangent lines in (b).\relax }{figure.caption.51}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.13}{\ignorespaces Zooming in on $f$ at $x=3$ for the function given in Examples \ref {ex_der_meaning4} and \ref {ex_der_meaning5}.\relax }}{75}{figure.caption.52}}
\newlabel{fig:fwithderivzoom3}{{2.13}{75}{Zooming in on $f$ at $x=3$ for the function given in Examples \ref {ex_der_meaning4} and \ref {ex_der_meaning5}.\relax }{figure.caption.52}{}}
\newlabel{eex_der_meaning3}{{1}{75}{Interpretations of the Derivative}{examplecounter.43}{}}
\pgfsyspdfmark {pgfid131}{23468004}{45921075}
\pgfsyspdfmark {pgfid132}{4474142}{44477938}
\newlabel{ex_der_meaning4}{{44}{75}{Interpretations of the Derivative}{examplecounter.44}{}}
\newlabel{eex_der_meaning4}{{1}{75}{Interpretations of the Derivative}{examplecounter.44}{}}
\pgfsyspdfmark {pgfid133}{21269367}{34706348}
\pgfsyspdfmark {pgfid134}{4474142}{33263211}
\newlabel{ex_der_meaning5}{{45}{75}{Interpretations of the Derivative}{examplecounter.45}{}}
\newlabel{eex_der_meaning5}{{1}{75}{Interpretations of the Derivative}{examplecounter.45}{}}
\pgfsyspdfmark {pgfid135}{13864673}{18175133}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Basic Differentiation Rules}{78}{section.2.3}}
\newlabel{sec:basic_diff_rules}{{2.3}{78}{Basic Differentiation Rules}{section.2.3}{}}
\newlabel{thm:deriv_common}{{12}{78}{Basic Differentiation Rules}{theoremcounter.12}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.14}{\ignorespaces A graph of $f(x) = x^3$, along with its derivative $\ensuremath {f\tmspace +\thinmuskip {.1667em}'}(x) = 3x^2$ and its tangent line at $x=-1$.\relax }}{79}{figure.caption.53}}
\newlabel{fig:xcubedwithderiv}{{2.14}{79}{A graph of $f(x) = x^3$, along with its derivative $\fp (x) = 3x^2$ and its tangent line at $x=-1$.\relax }{figure.caption.53}{}}
\pgfsyspdfmark {pgfid137}{4474142}{34037070}
\newlabel{ex_deriv_rule1}{{46}{79}{Basic Differentiation Rules}{examplecounter.46}{}}
\newlabel{eex_deriv_rule1}{{2.3}{79}{Basic Differentiation Rules}{Item.561}{}}
\pgfsyspdfmark {pgfid138}{4736286}{14998862}
\newlabel{thm:deriv_prop}{{13}{80}{Basic Differentiation Rules}{theoremcounter.13}{}}
\pgfsyspdfmark {pgfid140}{14288487}{20664156}
\newlabel{ex_der2}{{47}{80}{Basic Differentiation Rules}{examplecounter.47}{}}
\pgfsyspdfmark {pgfid141}{19793511}{20500316}
\newlabel{eex_der2}{{13}{81}{Basic Differentiation Rules}{examplecounter.47}{}}
\pgfsyspdfmark {pgfid142}{20188658}{34712216}
\newlabel{def:Higher_Deriv}{{11}{81}{Basic Differentiation Rules}{definitioncounter.11}{}}
\pgfsyspdfmark {pgfid144}{14288487}{42837364}
\newlabel{ex_high_order}{{48}{82}{Basic Differentiation Rules}{examplecounter.48}{}}
\newlabel{eex_high_order}{{11}{82}{Basic Differentiation Rules}{Item.572}{}}
\pgfsyspdfmark {pgfid145}{14550631}{22116506}
\@writefile{lof}{\contentsline {figure}{\numberline {2.15}{\ignorespaces A graph of $y = 5x^2\qopname \relax o{sin}x$ and its tangent line at $x={"π}/2$.\relax }}{85}{figure.caption.54}}
\newlabel{fig:5xsquaredsinx}{{2.15}{85}{A graph of $y = 5x^2\sin x$ and its tangent line at $x=\pi /2$.\relax }{figure.caption.54}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}The Product and Quotient Rules}{85}{section.2.4}}
\newlabel{sec:prod_quot_rules}{{2.4}{85}{The Product and Quotient Rules}{section.2.4}{}}
\newlabel{thm:ProductRule}{{14}{85}{The Product and Quotient Rules}{theoremcounter.14}{}}
\pgfsyspdfmark {pgfid147}{4474142}{26991863}
\newlabel{ex_prod1}{{49}{85}{The Product and Quotient Rules}{examplecounter.49}{}}
\newlabel{eex_prod1}{{14}{85}{The Product and Quotient Rules}{examplecounter.49}{}}
\pgfsyspdfmark {pgfid148}{19104498}{14995292}
\pgfsyspdfmark {pgfid149}{14288487}{45174007}
\newlabel{ex_prove_product}{{50}{86}{The Product and Quotient Rules}{examplecounter.50}{}}
\newlabel{eex_prove_product}{{14}{86}{The Product and Quotient Rules}{examplecounter.50}{}}
\pgfsyspdfmark {pgfid150}{15533671}{26496650}
\pgfsyspdfmark {pgfid151}{14288487}{20906513}
\newlabel{ex_prod2}{{51}{86}{The Product and Quotient Rules}{examplecounter.51}{}}
\pgfsyspdfmark {pgfid152}{19793511}{20742673}
\newlabel{eex_prod2}{{14}{87}{The Product and Quotient Rules}{examplecounter.51}{}}
\pgfsyspdfmark {pgfid153}{17736907}{40044380}
\pgfsyspdfmark {pgfid154}{4474142}{38619133}
\newlabel{ex_prod10}{{52}{87}{The Product and Quotient Rules}{examplecounter.52}{}}
\newlabel{eex_prod10}{{14}{87}{The Product and Quotient Rules}{examplecounter.52}{}}
\pgfsyspdfmark {pgfid155}{7576392}{21055765}
\pgfsyspdfmark {pgfid156}{4474142}{18041431}
\newlabel{ex_deriv_ln}{{53}{87}{The Product and Quotient Rules}{examplecounter.53}{}}
\pgfsyspdfmark {pgfid157}{9979166}{17877591}
\newlabel{eex_deriv_ln}{{14}{88}{The Product and Quotient Rules}{Item.619}{}}
\pgfsyspdfmark {pgfid158}{21154897}{37604994}
\newlabel{thm:QuotientRule}{{15}{88}{The Product and Quotient Rules}{theoremcounter.15}{}}
\pgfsyspdfmark {pgfid160}{14288487}{15658433}
\newlabel{ex_quot1}{{54}{88}{The Product and Quotient Rules}{examplecounter.54}{}}
\pgfsyspdfmark {pgfid161}{19793511}{15494593}
\@writefile{lof}{\contentsline {figure}{\numberline {2.16}{\ignorespaces A graph of $y=\qopname \relax o{tan}x$ along with its tangent line at $x={"π}/4$.\relax }}{89}{figure.caption.55}}
\newlabel{fig:tanx}{{2.16}{89}{A graph of $y=\tan x$ along with its tangent line at $x=\pi /4$.\relax }{figure.caption.55}{}}
\newlabel{eex_quot1}{{15}{89}{The Product and Quotient Rules}{examplecounter.54}{}}
\pgfsyspdfmark {pgfid162}{5719326}{40952008}
\pgfsyspdfmark {pgfid163}{4474142}{35669125}
\newlabel{ex_der_tan}{{55}{89}{The Product and Quotient Rules}{examplecounter.55}{}}
\newlabel{eex_der_tan}{{15}{89}{The Product and Quotient Rules}{examplecounter.55}{}}
\pgfsyspdfmark {pgfid164}{17392498}{19291518}
\newlabel{thm:deriv_trig}{{16}{90}{The Product and Quotient Rules}{theoremcounter.16}{}}
\pgfsyspdfmark {pgfid166}{14288487}{35105363}
\newlabel{ex_prod_quot}{{56}{90}{The Product and Quotient Rules}{examplecounter.56}{}}
\newlabel{eex_prod_quot}{{16}{90}{The Product and Quotient Rules}{examplecounter.56}{}}
\pgfsyspdfmark {pgfid167}{18363217}{16568156}
\pgfsyspdfmark {pgfid168}{4474142}{46871347}
\newlabel{ex_deriv_power}{{57}{91}{The Product and Quotient Rules}{examplecounter.57}{}}
\newlabel{eex_deriv_power}{{16}{91}{The Product and Quotient Rules}{Item.629}{}}
\pgfsyspdfmark {pgfid169}{4736286}{35883568}
\newlabel{thm:PowerRule}{{17}{91}{The Product and Quotient Rules}{theoremcounter.17}{}}
\pgfsyspdfmark {pgfid171}{14288487}{45298483}
\newlabel{ex_multiple_deriv}{{58}{92}{The Product and Quotient Rules}{examplecounter.58}{}}
\newlabel{eex_multiple_deriv}{{17}{92}{The Product and Quotient Rules}{Item.635}{}}
\pgfsyspdfmark {pgfid172}{14550631}{17878876}
\@writefile{toc}{\contentsline {section}{\numberline {2.5}The Chain Rule}{96}{section.2.5}}
\newlabel{sec:chainrule}{{2.5}{96}{The Chain Rule}{section.2.5}{}}
\pgfsyspdfmark {pgfid173}{14288487}{29285331}
\newlabel{ex_chain1}{{59}{96}{The Chain Rule}{examplecounter.59}{}}
\pgfsyspdfmark {pgfid174}{19793511}{29121491}
\newlabel{eex_chain1}{{2.5}{97}{The Chain Rule}{examplecounter.59}{}}
\pgfsyspdfmark {pgfid175}{18809566}{41150204}
\newlabel{thm:chain_rule}{{18}{97}{The Chain Rule}{theoremcounter.18}{}}
\pgfsyspdfmark {pgfid177}{4474142}{30992330}
\newlabel{ex_chain2}{{60}{97}{The Chain Rule}{examplecounter.60}{}}
\pgfsyspdfmark {pgfid178}{9979166}{30828490}
\newlabel{eex_chain2}{{18}{98}{The Chain Rule}{examplecounter.60}{}}
\pgfsyspdfmark {pgfid179}{15533671}{39022608}
\newlabel{thm:gen_power_rule}{{19}{98}{The Chain Rule}{theoremcounter.19}{}}
\pgfsyspdfmark {pgfid181}{14288487}{20122958}
\newlabel{ex_chain3}{{61}{98}{The Chain Rule}{examplecounter.61}{}}
\pgfsyspdfmark {pgfid182}{19793511}{19959118}
\@writefile{lof}{\contentsline {figure}{\numberline {2.17}{\ignorespaces $f(x) = \qopname \relax o{cos}x^2$ sketched along with its tangent line at $x=1$.\relax }}{99}{figure.caption.56}}
\newlabel{fig:chain7}{{2.17}{99}{$f(x) = \cos x^2$ sketched along with its tangent line at $x=1$.\relax }{figure.caption.56}{}}
\newlabel{eex_chain3}{{19}{99}{The Chain Rule}{Item.686}{}}
\pgfsyspdfmark {pgfid183}{4736286}{35208172}
\pgfsyspdfmark {pgfid184}{4474142}{33792488}
\newlabel{ex_chain7}{{62}{99}{The Chain Rule}{examplecounter.62}{}}
\newlabel{eex_chain7}{{19}{99}{The Chain Rule}{examplecounter.62}{}}
\pgfsyspdfmark {pgfid185}{20697138}{25979852}
\pgfsyspdfmark {pgfid186}{14288487}{31757137}
\newlabel{ex_chain4}{{63}{100}{The Chain Rule}{examplecounter.63}{}}
\newlabel{eex_chain4}{{19}{100}{The Chain Rule}{Item.693}{}}
\pgfsyspdfmark {pgfid187}{14550631}{16570175}
\pgfsyspdfmark {pgfid188}{4474142}{40579891}
\newlabel{ex_chain6}{{64}{101}{The Chain Rule}{examplecounter.64}{}}
\newlabel{eex_chain6}{{19}{101}{The Chain Rule}{examplecounter.64}{}}
\pgfsyspdfmark {pgfid189}{6286686}{22809822}
\pgfsyspdfmark {pgfid190}{4474142}{18255070}
\newlabel{ex_chain5}{{65}{101}{The Chain Rule}{examplecounter.65}{}}
\pgfsyspdfmark {pgfid191}{9979166}{18091230}
\newlabel{eex_chain5}{{19}{102}{The Chain Rule}{examplecounter.65}{}}
\pgfsyspdfmark {pgfid192}{32151377}{38386137}
\pgfsyspdfmark {pgfid193}{14288487}{33756190}
\newlabel{ex_chain8}{{66}{102}{The Chain Rule}{examplecounter.66}{}}
\pgfsyspdfmark {pgfid194}{19793511}{33592350}
\newlabel{eex_chain8}{{19}{103}{The Chain Rule}{examplecounter.66}{}}
\pgfsyspdfmark {pgfid195}{15337992}{45921075}
\newlabel{thm:exponentials}{{20}{103}{The Chain Rule}{theoremcounter.20}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.18}{\ignorespaces A series of gears to demonstrate the Chain Rule. Note how $\frac {dy}{dx} = \frac {dy}{du}\cdot \frac {du}{dx}$\relax }}{104}{figure.caption.57}}
\newlabel{fig:chainrulegears}{{2.18}{104}{A series of gears to demonstrate the Chain Rule. Note how $\frac {dy}{dx} = \frac {dy}{du}\cdot \frac {du}{dx}$\relax }{figure.caption.57}{}}
\newlabel{exer:02_05_06}{{7}{105}{The Chain Rule}{Item.700}{}}
\newlabel{exer:02_05_09}{{10}{105}{The Chain Rule}{Item.703}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.19}{\ignorespaces A graph of the implicit function $\qopname \relax o{sin}(y)+y^3=6-x^3$.\relax }}{106}{figure.caption.58}}
\newlabel{fig:implicit1}{{2.19}{106}{A graph of the implicit function $\sin (y)+y^3=6-x^3$.\relax }{figure.caption.58}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.6}Implicit Differentiation}{106}{section.2.6}}
\newlabel{sec:imp_deriv}{{2.6}{106}{Implicit Differentiation}{section.2.6}{}}
\newlabel{eq:implicit1}{{2.1}{106}{Implicit Differentiation}{equation.2.6.1}{}}
\pgfsyspdfmark {pgfid197}{14288487}{19427014}
\newlabel{ex_implicit1}{{67}{106}{Implicit Differentiation}{examplecounter.67}{}}
\pgfsyspdfmark {pgfid198}{19793511}{19263174}
\newlabel{eex_implicit1}{{2.6}{107}{Implicit Differentiation}{figure.caption.58}{}}
\pgfsyspdfmark {pgfid199}{18662258}{30250087}
\pgfsyspdfmark {pgfid200}{4474142}{19403879}
\newlabel{ex_implicit2}{{68}{107}{Implicit Differentiation}{examplecounter.68}{}}
\pgfsyspdfmark {pgfid201}{9979166}{19240039}
\@writefile{lof}{\contentsline {figure}{\numberline {2.20}{\ignorespaces The function $\qopname \relax o{sin}y+y^3 = 6-x^3$ and its tangent line at the point $(\sqrt [3]{6},0)$.\relax }}{108}{figure.caption.59}}
\newlabel{fig:implicit2}{{2.20}{108}{The function $\sin y+y^3 = 6-x^3$ and its tangent line at the point $(\sqrt [3]{6},0)$.\relax }{figure.caption.59}{}}
\newlabel{eex_implicit2}{{2.6}{108}{Implicit Differentiation}{examplecounter.68}{}}
\pgfsyspdfmark {pgfid202}{29978363}{39354072}
\pgfsyspdfmark {pgfid203}{14288487}{26827652}
\newlabel{ex_implicit3}{{69}{108}{Implicit Differentiation}{examplecounter.69}{}}
\pgfsyspdfmark {pgfid204}{19793511}{26663812}
\@writefile{lof}{\contentsline {figure}{\numberline {2.21}{\ignorespaces A graph of the implicitly defined function $y^3+x^2y^4=1+2x$ along with its tangent line at the point $(0,1)$.\relax }}{109}{figure.caption.60}}
\newlabel{fig:implicit4}{{2.21}{109}{A graph of the implicitly defined function $y^3+x^2y^4=1+2x$ along with its tangent line at the point $(0,1)$.\relax }{figure.caption.60}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.22}{\ignorespaces A graph of the implicitly defined function $\qopname \relax o{sin}(x^2y^2)+y^3=x+y$.\relax }}{109}{figure.caption.61}}
\newlabel{fig:implicit5}{{2.22}{109}{A graph of the implicitly defined function $\sin (x^2y^2)+y^3=x+y$.\relax }{figure.caption.61}{}}
\newlabel{eex_implicit3}{{2.6}{109}{Implicit Differentiation}{figure.caption.59}{}}
\pgfsyspdfmark {pgfid205}{25707806}{37465349}
\pgfsyspdfmark {pgfid206}{4474142}{36024355}
\newlabel{ex_implicit5}{{70}{109}{Implicit Differentiation}{examplecounter.70}{}}
\pgfsyspdfmark {pgfid207}{9979166}{35860515}
\@writefile{lof}{\contentsline {figure}{\numberline {2.23}{\ignorespaces A graph of the implicitly defined function $\qopname \relax o{sin}(x^2y^2)+y^3=x+y$ and certain tangent lines.\relax }}{110}{figure.caption.62}}
\newlabel{fig:implicit6}{{2.23}{110}{A graph of the implicitly defined function $\sin (x^2y^2)+y^3=x+y$ and certain tangent lines.\relax }{figure.caption.62}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.24}{\ignorespaces The unit circle with its tangent line at $(1/2,\sqrt {3}/2)$.\relax }}{110}{figure.caption.63}}
\newlabel{fig:implicit7}{{2.24}{110}{The unit circle with its tangent line at $(1/2,\sqrt {3}/2)$.\relax }{figure.caption.63}{}}
\newlabel{eex_implicit5}{{2.6}{110}{Implicit Differentiation}{figure.caption.61}{}}
\pgfsyspdfmark {pgfid208}{16273083}{41202483}
\pgfsyspdfmark {pgfid209}{14288487}{36647731}
\newlabel{ex_implicit7}{{71}{110}{Implicit Differentiation}{examplecounter.71}{}}
\newlabel{eex_implicit7}{{2.6}{110}{Implicit Differentiation}{examplecounter.71}{}}
\pgfsyspdfmark {pgfid210}{18441723}{21535274}
\newlabel{thm:finalpower}{{21}{111}{Implicit Differentiation}{theoremcounter.21}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.25}{\ignorespaces An astroid, traced out by a point on the smaller circle as it rolls inside the larger circle.\relax }}{112}{figure.caption.64}}
\newlabel{fig:implicit9}{{2.25}{112}{An astroid, traced out by a point on the smaller circle as it rolls inside the larger circle.\relax }{figure.caption.64}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.26}{\ignorespaces An astroid with a tangent line.\relax }}{112}{figure.caption.65}}
\newlabel{fig:implicit8}{{2.26}{112}{An astroid with a tangent line.\relax }{figure.caption.65}{}}
\pgfsyspdfmark {pgfid212}{14288487}{42020531}
\newlabel{ex_implicit8}{{72}{112}{Implicit Differentiation}{examplecounter.72}{}}
\newlabel{eex_implicit8}{{21}{112}{Implicit Differentiation}{examplecounter.72}{}}
\pgfsyspdfmark {pgfid213}{26950558}{24786404}
\pgfsyspdfmark {pgfid214}{14288487}{16953700}
\newlabel{ex_implicit9}{{73}{112}{Implicit Differentiation}{examplecounter.73}{}}
\pgfsyspdfmark {pgfid215}{19793511}{16789860}
\@writefile{lof}{\contentsline {figure}{\numberline {2.27}{\ignorespaces A plot of $y=x^x$.\relax }}{113}{figure.caption.66}}
\newlabel{fig:logdiffa}{{2.27}{113}{A plot of $y=x^x$.\relax }{figure.caption.66}{}}
\newlabel{eex_implicit9}{{21}{113}{Implicit Differentiation}{figure.caption.65}{}}
\pgfsyspdfmark {pgfid216}{14901192}{29641266}
\pgfsyspdfmark {pgfid217}{4474142}{17075840}
\newlabel{ex_implicit10}{{74}{113}{Implicit Differentiation}{examplecounter.74}{}}
\pgfsyspdfmark {pgfid218}{9979166}{16912000}
\@writefile{lof}{\contentsline {figure}{\numberline {2.28}{\ignorespaces A graph of $y=x^x$ and its tangent line at $x=1.5$.\relax }}{114}{figure.caption.67}}
\newlabel{fig:implicit10}{{2.28}{114}{A graph of $y=x^x$ and its tangent line at $x=1.5$.\relax }{figure.caption.67}{}}
\newlabel{eex_implicit10}{{21}{114}{Implicit Differentiation}{figure.caption.66}{}}
\pgfsyspdfmark {pgfid219}{27418665}{29396875}
\newlabel{exer:02_06_ex_09}{{13}{115}{Implicit Differentiation}{Item.753}{}}
\newlabel{exer:02_06_ex_12}{{16}{115}{Implicit Differentiation}{Item.756}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.29}{\ignorespaces A function $f$ along with its inverse $f\hskip .75pt^{-1}$. (Note how it does not matter which function we refer to as $f$; the other is $f\hskip .75pt^{-1}$.)\relax }}{117}{figure.caption.68}}
\newlabel{fig:inverse1}{{2.29}{117}{A function $f$ along with its inverse $f\primeskip ^{-1}$. (Note how it does not matter which function we refer to as $f$; the other is $f\primeskip ^{-1}$.)\relax }{figure.caption.68}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.30}{\ignorespaces Corresponding tangent lines drawn to $f$ and $f\hskip .75pt^{-1}$.\relax }}{117}{figure.caption.69}}
\newlabel{fig:inverse2}{{2.30}{117}{Corresponding tangent lines drawn to $f$ and $f\primeskip ^{-1}$.\relax }{figure.caption.69}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.7}Derivatives of Inverse Functions}{117}{section.2.7}}
\newlabel{sec:deriv_inverse_function}{{2.7}{117}{Derivatives of Inverse Functions}{section.2.7}{}}
\newlabel{thm:deriv_inverse_functions}{{22}{118}{Derivatives of Inverse Functions}{theoremcounter.22}{}}
\pgfsyspdfmark {pgfid221}{14288487}{26498027}
\newlabel{ex_deriv_arcsin}{{75}{118}{Derivatives of Inverse Functions}{examplecounter.75}{}}
\pgfsyspdfmark {pgfid222}{19793511}{26334187}
\@writefile{lof}{\contentsline {figure}{\numberline {2.32}{\ignorespaces A right triangle defined by $y=\qopname \relax o{sin}^{-1}(x/1)$ with the length of the third leg found using the Pythagorean Theorem.\relax }}{119}{figure.caption.71}}
\newlabel{fig:inverse3}{{2.32}{119}{A right triangle defined by $y=\sin ^{-1}(x/1)$ with the length of the third leg found using the Pythagorean Theorem.\relax }{figure.caption.71}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.33}{\ignorespaces Graphs of $\qopname \relax o{sin}x$ and $\qopname \relax o{sin}^{-1}x$ along with corresponding tangent lines.\relax }}{119}{figure.caption.72}}
\newlabel{fig:inverse4}{{2.33}{119}{Graphs of $\sin x$ and $\sin ^{-1}x$ along with corresponding tangent lines.\relax }{figure.caption.72}{}}
\newlabel{eex_deriv_arcsin}{{22}{119}{Derivatives of Inverse Functions}{examplecounter.75}{}}
\pgfsyspdfmark {pgfid223}{5719326}{37283720}
\@writefile{lof}{\contentsline {figure}{\numberline {2.31}{\ignorespaces Domains and ranges of the trigonometric and inverse trigonometric functions.\relax }}{120}{figure.caption.70}}
\newlabel{fig:domain_trig}{{2.31}{120}{Domains and ranges of the trigonometric and inverse trigonometric functions.\relax }{figure.caption.70}{}}
\newlabel{thm:deriv_inverse_trig}{{23}{120}{Derivatives of Inverse Functions}{theoremcounter.23}{}}
\pgfsyspdfmark {pgfid225}{14288487}{18375917}
\newlabel{ex_deriv_lnx}{{76}{120}{Derivatives of Inverse Functions}{examplecounter.76}{}}
\pgfsyspdfmark {pgfid226}{19793511}{18212077}
\newlabel{eex_deriv_lnx}{{23}{121}{Derivatives of Inverse Functions}{examplecounter.76}{}}
\pgfsyspdfmark {pgfid227}{5719326}{41209403}
\newlabel{thm:deriv_glossary}{{24}{121}{Derivatives of Inverse Functions}{theoremcounter.24}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Graphs of functions with and without extreme values.\relax }}{123}{figure.caption.73}}
\newlabel{fig:extreme}{{3.1}{123}{Graphs of functions with and without extreme values.\relax }{figure.caption.73}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}The Graphical Behavior of Functions}{123}{chapter.3}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chapter:graphbehavior}{{3}{123}{The Graphical Behavior of Functions}{chapter.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Extreme Values}{123}{section.3.1}}
\newlabel{sec:extreme_values}{{3.1}{123}{Extreme Values}{section.3.1}{}}
\newlabel{def:extreme_values}{{12}{123}{Extreme Values}{definitioncounter.12}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces A graph of $f(x) = 2x^3-9x^2$ as in Example \ref {ex_extval1}.\relax }}{124}{figure.caption.74}}
\newlabel{fig:extval1}{{3.2}{124}{A graph of $f(x) = 2x^3-9x^2$ as in Example \ref {ex_extval1}.\relax }{figure.caption.74}{}}
\newlabel{thm:extreme_val}{{25}{124}{Extreme Values}{theoremcounter.25}{}}
\pgfsyspdfmark {pgfid231}{14288487}{38139233}
\newlabel{ex_extval1}{{77}{124}{Extreme Values}{examplecounter.77}{}}
\newlabel{eex_extval1}{{25}{124}{Extreme Values}{examplecounter.77}{}}
\pgfsyspdfmark {pgfid232}{28310703}{30859759}
\newlabel{def:rel_ext}{{13}{124}{Extreme Values}{definitioncounter.13}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces A graph of $f(x) = (3x^4-4x^3-12x^2+5)/5$ as in Example \ref {ex_extval2}.\relax }}{125}{figure.caption.75}}
\newlabel{fig:extval2}{{3.3}{125}{A graph of $f(x) = (3x^4-4x^3-12x^2+5)/5$ as in Example \ref {ex_extval2}.\relax }{figure.caption.75}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces A graph of $f(x) = (x-1)^{2/3}+2$ as in Example \ref {ex_extval3}.\relax }}{125}{figure.caption.76}}
\newlabel{fig:extval3}{{3.4}{125}{A graph of $f(x) = (x-1)^{2/3}+2$ as in Example \ref {ex_extval3}.\relax }{figure.caption.76}{}}
\pgfsyspdfmark {pgfid234}{4474142}{43853394}
\newlabel{ex_extval2}{{78}{125}{Extreme Values}{examplecounter.78}{}}
\newlabel{eex_extval2}{{13}{125}{Extreme Values}{examplecounter.78}{}}
\pgfsyspdfmark {pgfid235}{12984639}{34050816}
\pgfsyspdfmark {pgfid236}{4474142}{32312463}
\newlabel{ex_extval3}{{79}{125}{Extreme Values}{examplecounter.79}{}}
\newlabel{eex_extval3}{{13}{125}{Extreme Values}{examplecounter.79}{}}
\pgfsyspdfmark {pgfid237}{22908491}{25984942}
\newlabel{def:criticalnum}{{14}{125}{Extreme Values}{definitioncounter.14}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces A graph of $f(x)=x^3$ which has a critical value of $x=0$, but no relative extrema.\relax }}{126}{figure.caption.77}}
\newlabel{fig:extreme4}{{3.5}{126}{A graph of $f(x)=x^3$ which has a critical value of $x=0$, but no relative extrema.\relax }{figure.caption.77}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces A graph of $f(x) = 2x^3+3x^2-12x$ on $[0,3]$ as in Example \ref {ex_extval4}.\relax }}{126}{figure.caption.78}}
\newlabel{fig:extval4}{{3.6}{126}{A graph of $f(x) = 2x^3+3x^2-12x$ on $[0,3]$ as in Example \ref {ex_extval4}.\relax }{figure.caption.78}{}}
\newlabel{thm:criticalpts}{{26}{126}{Extreme Values}{theoremcounter.26}{}}
\newlabel{idea:extrema}{{2}{126}{Extreme Values}{keyideacounter.2}{}}
\pgfsyspdfmark {pgfid241}{14288487}{20896784}
\newlabel{ex_extval4}{{80}{126}{Extreme Values}{examplecounter.80}{}}
\pgfsyspdfmark {pgfid242}{19793511}{20732944}
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces Finding the extreme values of $f$ in Example \ref {ex_extval4}.\relax }}{127}{figure.caption.79}}
\newlabel{table:ext4}{{3.7}{127}{Finding the extreme values of $f$ in Example \ref {ex_extval4}.\relax }{figure.caption.79}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces Finding the extreme values of $f$ in Example \ref {ex_extval5}.\relax }}{127}{figure.caption.80}}
\newlabel{table:ext5}{{3.8}{127}{Finding the extreme values of $f$ in Example \ref {ex_extval5}.\relax }{figure.caption.80}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces A graph of $f(x)$ on $[-4,2]$ as in Example \ref {ex_extval5}.\relax }}{127}{figure.caption.81}}
\newlabel{fig:extval5}{{3.9}{127}{A graph of $f(x)$ on $[-4,2]$ as in Example \ref {ex_extval5}.\relax }{figure.caption.81}{}}
\newlabel{eex_extval4}{{2}{127}{Extreme Values}{figure.caption.78}{}}
\pgfsyspdfmark {pgfid243}{5719326}{43561779}
\pgfsyspdfmark {pgfid244}{4474142}{37434163}
\newlabel{ex_extval5}{{81}{127}{Extreme Values}{examplecounter.81}{}}
\newlabel{eex_extval5}{{2}{127}{Extreme Values}{examplecounter.81}{}}
\pgfsyspdfmark {pgfid245}{15223004}{16631118}
\@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces Finding the extrema of $f(x)= \qopname \relax o{cos}(x^2)$ in Example \ref {ex_extval6}.\relax }}{128}{figure.caption.82}}
\newlabel{table:ext6}{{3.10}{128}{Finding the extrema of $f(x)= \cos (x^2)$ in Example \ref {ex_extval6}.\relax }{figure.caption.82}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces A graph of $f(x)=\qopname \relax o{cos}(x^2)$ on $[-2,2]$ as in Example \ref {ex_extval6}.\relax }}{128}{figure.caption.83}}
\newlabel{fig:extval6}{{3.11}{128}{A graph of $f(x)=\cos (x^2)$ on $[-2,2]$ as in Example \ref {ex_extval6}.\relax }{figure.caption.83}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces A graph of $f(x)=\sqrt {1-x^2}$ on $[-1,1]$ as in Example \ref {ex_extval7}.\relax }}{128}{figure.caption.84}}
\newlabel{fig:extval7}{{3.12}{128}{A graph of $f(x)=\sqrt {1-x^2}$ on $[-1,1]$ as in Example \ref {ex_extval7}.\relax }{figure.caption.84}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces Finding the extrema of the half--circle in Example \ref {ex_extval7}.\relax }}{128}{figure.caption.85}}
\newlabel{table:ext7}{{3.13}{128}{Finding the extrema of the half--circle in Example \ref {ex_extval7}.\relax }{figure.caption.85}{}}
\pgfsyspdfmark {pgfid246}{14288487}{46871347}
\newlabel{ex_extval6}{{82}{128}{Extreme Values}{examplecounter.82}{}}
\newlabel{eex_extval6}{{2}{128}{Extreme Values}{examplecounter.82}{}}
\pgfsyspdfmark {pgfid247}{33012355}{34124595}
\pgfsyspdfmark {pgfid248}{14288487}{31142707}
\newlabel{ex_extval7}{{83}{128}{Extreme Values}{examplecounter.83}{}}
\newlabel{eex_extval7}{{2}{128}{Extreme Values}{examplecounter.83}{}}
\pgfsyspdfmark {pgfid249}{25034897}{22464684}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}The Mean Value Theorem}{131}{section.3.2}}
\newlabel{sec:mvt}{{3.2}{131}{The Mean Value Theorem}{section.3.2}{}}
\pgfsyspdfmark {pgfid250}{4474142}{18190677}
\newlabel{ex_mvt1}{{84}{131}{The Mean Value Theorem}{examplecounter.84}{}}
\pgfsyspdfmark {pgfid251}{9979166}{18026837}
\@writefile{lof}{\contentsline {figure}{\numberline {3.14}{\ignorespaces A graph of $f_1(x) = 1/x^2$ and $f_2(x) = |x|$ in Example \ref {ex_mvt1}.\relax }}{132}{figure.caption.86}}
\newlabel{fig:mvt1}{{3.14}{132}{A graph of $f_1(x) = 1/x^2$ and $f_2(x) = |x|$ in Example \ref {ex_mvt1}.\relax }{figure.caption.86}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.15}{\ignorespaces A graph of $f(x) = x^3-5x^2+3x+5$, where $f(a) = f(b)$. Note the existence of $c$, where $a<c<b$, where $\ensuremath {f\tmspace +\thinmuskip {.1667em}'}(c)=0$.\relax }}{132}{figure.caption.87}}
\newlabel{fig:mvt3}{{3.15}{132}{A graph of $f(x) = x^3-5x^2+3x+5$, where $f(a) = f(b)$. Note the existence of $c$, where $a<c<b$, where $\fp (c)=0$.\relax }{figure.caption.87}{}}
\newlabel{eex_mvt1}{{3.2}{132}{The Mean Value Theorem}{examplecounter.84}{}}
\pgfsyspdfmark {pgfid252}{15533671}{42511583}
\newlabel{thm:mvt}{{27}{132}{The Mean Value Theorem}{theoremcounter.27}{}}
\newlabel{thm:rolles}{{28}{132}{The Mean Value Theorem}{theoremcounter.28}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.16}{\ignorespaces Demonstrating the Mean Value Theorem in Example \ref {ex_mvt2}.\relax }}{134}{figure.caption.88}}
\newlabel{fig:mvt4}{{3.16}{134}{Demonstrating the Mean Value Theorem in Example \ref {ex_mvt2}.\relax }{figure.caption.88}{}}
\pgfsyspdfmark {pgfid255}{14288487}{38220595}
\newlabel{ex_mvt2}{{85}{134}{The Mean Value Theorem}{examplecounter.85}{}}
\newlabel{eex_mvt2}{{28}{134}{The Mean Value Theorem}{examplecounter.85}{}}
\pgfsyspdfmark {pgfid256}{33137723}{21163398}
\@writefile{lof}{\contentsline {figure}{\numberline {3.17}{\ignorespaces A graph of a function $f$ used to illustrate the concepts of \textit {increasing} and \textit {decreasing}.\relax }}{136}{figure.caption.89}}
\newlabel{fig:incr0}{{3.17}{136}{A graph of a function $f$ used to illustrate the concepts of \textit {increasing} and \textit {decreasing}.\relax }{figure.caption.89}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.18}{\ignorespaces Examining the secant line of an increasing function.\relax }}{136}{figure.caption.90}}
\newlabel{fig:incr00}{{3.18}{136}{Examining the secant line of an increasing function.\relax }{figure.caption.90}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Increasing and Decreasing Functions}{136}{section.3.3}}
\newlabel{sec:incr_decr}{{3.3}{136}{Increasing and Decreasing Functions}{section.3.3}{}}
\newlabel{def:incr_decr}{{15}{136}{Increasing and Decreasing Functions}{definitioncounter.15}{}}
\newlabel{thm:incr_decr}{{29}{137}{Increasing and Decreasing Functions}{theoremcounter.29}{}}
\newlabel{idea:incr_decr}{{3}{137}{Increasing and Decreasing Functions}{keyideacounter.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.20}{\ignorespaces A graph of $f(x)$ in Example \ref {ex_incr1}, showing where $f$ is increasing and decreasing.\relax }}{138}{figure.caption.92}}
\newlabel{fig:incr1}{{3.20}{138}{A graph of $f(x)$ in Example \ref {ex_incr1}, showing where $f$ is increasing and decreasing.\relax }{figure.caption.92}{}}
\pgfsyspdfmark {pgfid260}{14288487}{45241568}
\newlabel{ex_incr1}{{86}{138}{Increasing and Decreasing Functions}{examplecounter.86}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.19}{\ignorespaces Number line for $f$ in Example \ref {ex_incr1}.\relax }}{138}{figure.caption.91}}
\newlabel{fig:incrline1}{{3.19}{138}{Number line for $f$ in Example \ref {ex_incr1}.\relax }{figure.caption.91}{}}
\newlabel{eex_incr1}{{3}{138}{Increasing and Decreasing Functions}{figure.caption.91}{}}
\pgfsyspdfmark {pgfid261}{20512443}{17468418}
\newlabel{thm:first_der}{{30}{139}{Increasing and Decreasing Functions}{theoremcounter.30}{}}
\pgfsyspdfmark {pgfid263}{14288487}{46063643}
\newlabel{ex_incr2}{{87}{140}{Increasing and Decreasing Functions}{examplecounter.87}{}}
\pgfsyspdfmark {pgfid264}{19793511}{45899803}
\@writefile{lof}{\contentsline {figure}{\numberline {3.22}{\ignorespaces A graph of $f(x)$ in Example \ref {ex_incr2}, showing where $f$ is increasing and decreasing.\relax }}{141}{figure.caption.94}}
\newlabel{fig:incr2}{{3.22}{141}{A graph of $f(x)$ in Example \ref {ex_incr2}, showing where $f$ is increasing and decreasing.\relax }{figure.caption.94}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.21}{\ignorespaces Number line for $f$ in Example \ref {ex_incr2}.\relax }}{141}{figure.caption.93}}
\newlabel{fig:incrline2}{{3.21}{141}{Number line for $f$ in Example \ref {ex_incr2}.\relax }{figure.caption.93}{}}
\newlabel{eex_incr2}{{30}{141}{Increasing and Decreasing Functions}{figure.caption.93}{}}
\pgfsyspdfmark {pgfid265}{25097062}{32536212}
\pgfsyspdfmark {pgfid266}{4474142}{25578933}
\newlabel{ex_incr3}{{88}{141}{Increasing and Decreasing Functions}{examplecounter.88}{}}
\pgfsyspdfmark {pgfid267}{9979166}{25415093}
\@writefile{lof}{\contentsline {figure}{\numberline {3.24}{\ignorespaces A graph of $f(x)$ in Example \ref {ex_incr3}, showing where $f$ is increasing and decreasing.\relax }}{142}{figure.caption.96}}
\newlabel{fig:incr3}{{3.24}{142}{A graph of $f(x)$ in Example \ref {ex_incr3}, showing where $f$ is increasing and decreasing.\relax }{figure.caption.96}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.23}{\ignorespaces Number line for $f$ in Example \ref {ex_incr3}.\relax }}{142}{figure.caption.95}}
\newlabel{fig:incrline3}{{3.23}{142}{Number line for $f$ in Example \ref {ex_incr3}.\relax }{figure.caption.95}{}}
\newlabel{eex_incr3}{{30}{142}{Increasing and Decreasing Functions}{figure.caption.95}{}}
\pgfsyspdfmark {pgfid268}{23162218}{17471387}
\@writefile{lof}{\contentsline {figure}{\numberline {3.25}{\ignorespaces A function $f$ with a concave up graph. Notice how the slopes of the tangent lines, when looking from left to right, are increasing.\relax }}{144}{figure.caption.97}}
\newlabel{fig:concavity1}{{3.25}{144}{A function $f$ with a concave up graph. Notice how the slopes of the tangent lines, when looking from left to right, are increasing.\relax }{figure.caption.97}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.26}{\ignorespaces A function $f$ with a concave down graph. Notice how the slopes of the tangent lines, when looking from left to right, are decreasing.\relax }}{144}{figure.caption.98}}
\newlabel{fig:concavity2}{{3.26}{144}{A function $f$ with a concave down graph. Notice how the slopes of the tangent lines, when looking from left to right, are decreasing.\relax }{figure.caption.98}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.4}Concavity and the Second Derivative}{144}{section.3.4}}
\newlabel{sec:concavity}{{3.4}{144}{Concavity and the Second Derivative}{section.3.4}{}}
\newlabel{def:concavity}{{16}{144}{Concavity and the Second Derivative}{definitioncounter.16}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.27}{\ignorespaces Demonstrating the 4 ways that concavity interacts with increasing/decreasing, along with the relationships with the first and second derivatives.\relax }}{145}{figure.caption.99}}
\newlabel{fig:concavity3}{{3.27}{145}{Demonstrating the 4 ways that concavity interacts with increasing/decreasing, along with the relationships with the first and second derivatives.\relax }{figure.caption.99}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.28}{\ignorespaces A graph of a function with its inflection points marked. The intervals where concave up/down are also indicated.\relax }}{145}{figure.caption.100}}
\newlabel{fig:concavity4}{{3.28}{145}{A graph of a function with its inflection points marked. The intervals where concave up/down are also indicated.\relax }{figure.caption.100}{}}
\newlabel{thm:concavity}{{31}{145}{Concavity and the Second Derivative}{theoremcounter.31}{}}
\newlabel{def:infl}{{17}{145}{Concavity and the Second Derivative}{definitioncounter.17}{}}
\newlabel{thm:inflection}{{32}{145}{Concavity and the Second Derivative}{theoremcounter.32}{}}
\pgfsyspdfmark {pgfid273}{4474142}{15945564}
\newlabel{ex_conc1}{{89}{145}{Concavity and the Second Derivative}{examplecounter.89}{}}
\pgfsyspdfmark {pgfid274}{9979166}{15781724}
\@writefile{lof}{\contentsline {figure}{\numberline {3.29}{\ignorespaces A number line determining the concavity of $f$ in Example \ref {ex_conc1}.\relax }}{146}{figure.caption.101}}
\newlabel{fig:concline1}{{3.29}{146}{A number line determining the concavity of $f$ in Example \ref {ex_conc1}.\relax }{figure.caption.101}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.30}{\ignorespaces A graph of $f(x)$ used in Example \ref {ex_conc1}.\relax }}{146}{figure.caption.102}}
\newlabel{fig:conc1}{{3.30}{146}{A graph of $f(x)$ used in Example \ref {ex_conc1}.\relax }{figure.caption.102}{}}
\newlabel{eex_conc1}{{32}{146}{Concavity and the Second Derivative}{figure.caption.100}{}}
\pgfsyspdfmark {pgfid275}{35293425}{37957275}
\pgfsyspdfmark {pgfid276}{14288487}{36498512}
\newlabel{ex_conc2}{{90}{146}{Concavity and the Second Derivative}{examplecounter.90}{}}
\pgfsyspdfmark {pgfid277}{19793511}{36334672}
\@writefile{lof}{\contentsline {figure}{\numberline {3.32}{\ignorespaces A graph of $f(x)$ and $\ensuremath {f\tmspace +\thinmuskip {.1667em}''}(x)$ in Example \ref {ex_conc2}.\relax }}{147}{figure.caption.104}}
\newlabel{fig:conc2}{{3.32}{147}{A graph of $f(x)$ and $\fpp (x)$ in Example \ref {ex_conc2}.\relax }{figure.caption.104}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.33}{\ignorespaces A graph of $S(t)$ in Example \ref {ex_conc3}, modeling the sale of a product over time.\relax }}{147}{figure.caption.105}}
\newlabel{fig:conc3}{{3.33}{147}{A graph of $S(t)$ in Example \ref {ex_conc3}, modeling the sale of a product over time.\relax }{figure.caption.105}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.31}{\ignorespaces Number line for $f$ in Example \ref {ex_conc2}.\relax }}{147}{figure.caption.103}}
\newlabel{fig:concline2}{{3.31}{147}{Number line for $f$ in Example \ref {ex_conc2}.\relax }{figure.caption.103}{}}
\newlabel{eex_conc2}{{32}{147}{Concavity and the Second Derivative}{figure.caption.103}{}}
\pgfsyspdfmark {pgfid278}{25707806}{32635908}
\pgfsyspdfmark {pgfid279}{4474142}{22350057}
\newlabel{ex_conc3}{{91}{147}{Concavity and the Second Derivative}{examplecounter.91}{}}
\pgfsyspdfmark {pgfid280}{9979166}{22186217}
\@writefile{lof}{\contentsline {figure}{\numberline {3.34}{\ignorespaces A graph of $S(t)$ in Example \ref {ex_conc3} along with $S\hskip .75pt'(t)$.\relax }}{148}{figure.caption.106}}
\newlabel{fig:conc3b}{{3.34}{148}{A graph of $S(t)$ in Example \ref {ex_conc3} along with $S\primeskip '(t)$.\relax }{figure.caption.106}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.35}{\ignorespaces A graph of $f(x) = x^4$. Clearly $f$ is always concave up, despite the fact that $\ensuremath {f\tmspace +\thinmuskip {.1667em}''}(x) = 0$ when $x=0$. It this example, the \textit {possible} point of inflection $(0,0)$ is not a point of inflection.\relax }}{148}{figure.caption.107}}
\newlabel{fig:concavity5}{{3.35}{148}{A graph of $f(x) = x^4$. Clearly $f$ is always concave up, despite the fact that $\fpp (x) = 0$ when $x=0$. It this example, the \textit {possible} point of inflection $(0,0)$ is not a point of inflection.\relax }{figure.caption.107}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.36}{\ignorespaces Demonstrating the fact that relative maxima occur when the graph is concave down and relative minima occur when the graph is concave up.\relax }}{148}{figure.caption.108}}
\newlabel{fig:concavity6}{{3.36}{148}{Demonstrating the fact that relative maxima occur when the graph is concave down and relative minima occur when the graph is concave up.\relax }{figure.caption.108}{}}
\newlabel{eex_conc3}{{32}{148}{Concavity and the Second Derivative}{figure.caption.105}{}}
\pgfsyspdfmark {pgfid281}{29150097}{41988915}
\newlabel{thm:second_der}{{33}{148}{Concavity and the Second Derivative}{theoremcounter.33}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.37}{\ignorespaces A graph of $f(x)$ in Example \ref {ex_conc4}. The second derivative is evaluated at each critical point. When the graph is concave up, the critical point represents a local minimum; when the graph is concave down, the critical point represents a local maximum.\relax }}{149}{figure.caption.109}}
\newlabel{fig:conc4}{{3.37}{149}{A graph of $f(x)$ in Example \ref {ex_conc4}. The second derivative is evaluated at each critical point. When the graph is concave up, the critical point represents a local minimum; when the graph is concave down, the critical point represents a local maximum.\relax }{figure.caption.109}{}}
\pgfsyspdfmark {pgfid283}{4474142}{46871347}
\newlabel{ex_conc4}{{92}{149}{Concavity and the Second Derivative}{examplecounter.92}{}}
\newlabel{eex_conc4}{{33}{149}{Concavity and the Second Derivative}{examplecounter.92}{}}
\pgfsyspdfmark {pgfid284}{19597150}{39629619}
\newlabel{exer:03_04_ex_16}{{16}{150}{Concavity and the Second Derivative}{Item.976}{}}
\newlabel{exer:03_04_ex_28}{{28}{150}{Concavity and the Second Derivative}{Item.988}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.5}Curve Sketching}{152}{section.3.5}}
\newlabel{sec:sketch}{{3.5}{152}{Curve Sketching}{section.3.5}{}}
\newlabel{idea:sketch}{{4}{152}{Curve Sketching}{keyideacounter.4}{}}
\newlabel{idea:sketchb}{{4}{153}{Curve Sketching}{keyideacounter.4}{}}
\pgfsyspdfmark {pgfid287}{4474142}{34993213}
\newlabel{ex_sketch1}{{93}{153}{Curve Sketching}{examplecounter.93}{}}
\pgfsyspdfmark {pgfid288}{9979166}{34829373}
\@writefile{lof}{\contentsline {figure}{\numberline {3.39}{\ignorespaces Sketching $f$ in Example \ref {ex_sketch1}.\relax }}{154}{figure.caption.111}}
\newlabel{fig:sketch1}{{3.39}{154}{Sketching $f$ in Example \ref {ex_sketch1}.\relax }{figure.caption.111}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.38}{\ignorespaces Number line for $f$ in Example \ref {ex_sketch1}.\relax }}{154}{figure.caption.110}}
\newlabel{fig:sketchline1}{{3.38}{154}{Number line for $f$ in Example \ref {ex_sketch1}.\relax }{figure.caption.110}{}}
\newlabel{eex_sketch1}{{4}{154}{Curve Sketching}{Item.1028}{}}
\pgfsyspdfmark {pgfid289}{15533671}{34376210}
\pgfsyspdfmark {pgfid290}{14288487}{32967186}
\newlabel{ex_sketch2}{{94}{154}{Curve Sketching}{examplecounter.94}{}}
\pgfsyspdfmark {pgfid291}{19793511}{32803346}
\@writefile{lof}{\contentsline {figure}{\numberline {3.41}{\ignorespaces Sketching $f$ in Example \ref {ex_sketch2}.\relax }}{155}{figure.caption.113}}
\newlabel{fig:sketch2}{{3.41}{155}{Sketching $f$ in Example \ref {ex_sketch2}.\relax }{figure.caption.113}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.40}{\ignorespaces Number line for $f$ in Example \ref {ex_sketch2}.\relax }}{155}{figure.caption.112}}
\newlabel{fig:sketchline2}{{3.40}{155}{Number line for $f$ in Example \ref {ex_sketch2}.\relax }{figure.caption.112}{}}
\newlabel{eex_sketch2}{{4}{155}{Curve Sketching}{Item.1035}{}}
\pgfsyspdfmark {pgfid292}{5719326}{25218666}
\pgfsyspdfmark {pgfid293}{4474142}{23809642}
\newlabel{ex_sketch3}{{95}{155}{Curve Sketching}{examplecounter.95}{}}
\pgfsyspdfmark {pgfid294}{9979166}{23645802}
\@writefile{lof}{\contentsline {figure}{\numberline {3.43}{\ignorespaces Sketching $f$ in Example \ref {ex_sketch3}.\relax }}{156}{figure.caption.115}}
\newlabel{fig:sketch3}{{3.43}{156}{Sketching $f$ in Example \ref {ex_sketch3}.\relax }{figure.caption.115}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.42}{\ignorespaces Number line for $f$ in Example \ref {ex_sketch3}.\relax }}{156}{figure.caption.114}}
\newlabel{fig:sketchline3}{{3.42}{156}{Number line for $f$ in Example \ref {ex_sketch3}.\relax }{figure.caption.114}{}}
\newlabel{eex_sketch3}{{4}{156}{Curve Sketching}{Item.1042}{}}
\pgfsyspdfmark {pgfid295}{15533671}{26074611}
\@writefile{lof}{\contentsline {figure}{\numberline {3.44}{\ignorespaces A graph of $y=\qopname \relax o{sin}x$ generated by \textit {Mathematica}.\relax }}{157}{figure.caption.116}}
\newlabel{fig:mathematica_sinx}{{3.44}{157}{A graph of $y=\sin x$ generated by \textit {Mathematica}.\relax }{figure.caption.116}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Demonstrating the geometric concept behind Newton's Method.\relax }}{159}{figure.caption.117}}
\newlabel{fig:newt1}{{4.1}{159}{Demonstrating the geometric concept behind Newton's Method.\relax }{figure.caption.117}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Applications of the Derivative}{159}{chapter.4}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chapter:deriv_apps}{{4}{159}{Applications of the Derivative}{chapter.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Newton's Method}{159}{section.4.1}}
\newlabel{sec:newton}{{4.1}{159}{Newton's Method}{section.4.1}{}}
\newlabel{idea:Newton}{{5}{160}{Newton's Method}{keyideacounter.5}{}}
\pgfsyspdfmark {pgfid297}{14288487}{17892856}
\newlabel{ex_newt2}{{96}{160}{Newton's Method}{examplecounter.96}{}}
\pgfsyspdfmark {pgfid298}{19793511}{17729016}
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces A graph of $f(x) = x^3-x^2-1$ in Example \ref {ex_newt2}.\relax }}{161}{figure.caption.118}}
\newlabel{fig:newt2}{{4.2}{161}{A graph of $f(x) = x^3-x^2-1$ in Example \ref {ex_newt2}.\relax }{figure.caption.118}{}}
\newlabel{eex_newt2}{{5}{161}{Newton's Method}{examplecounter.96}{}}
\pgfsyspdfmark {pgfid299}{16558258}{29613839}
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces A graph of $f(x)=\qopname \relax o{cos}x-x$ used to find an initial approximation of its root.\relax }}{162}{figure.caption.119}}
\newlabel{fig:newt3}{{4.3}{162}{A graph of $f(x)=\cos x-x$ used to find an initial approximation of its root.\relax }{figure.caption.119}{}}
\pgfsyspdfmark {pgfid300}{14288487}{46871347}
\newlabel{ex_newt3}{{97}{162}{Newton's Method}{examplecounter.97}{}}
\newlabel{eex_newt3}{{5}{162}{Newton's Method}{figure.caption.118}{}}
\pgfsyspdfmark {pgfid301}{22083857}{16569406}
\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces A graph of $f(x) = x^3-x^2-1$, showing why an initial approximation of $x_0=0$ with Newton's Method fails.\relax }}{163}{figure.caption.120}}
\newlabel{fig:newt2a}{{4.4}{163}{A graph of $f(x) = x^3-x^2-1$, showing why an initial approximation of $x_0=0$ with Newton's Method fails.\relax }{figure.caption.120}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Newton's Method fails to find a root of $f(x) = x^{1/3}$, regardless of the choice of $x_0$.\relax }}{163}{figure.caption.121}}
\newlabel{fig:newt4}{{4.5}{163}{Newton's Method fails to find a root of $f(x) = x^{1/3}$, regardless of the choice of $x_0$.\relax }{figure.caption.121}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Related Rates}{166}{section.4.2}}
\newlabel{sec:related_rates}{{4.2}{166}{Related Rates}{section.4.2}{}}
\pgfsyspdfmark {pgfid302}{14288487}{37369489}
\newlabel{ex_rr1}{{98}{166}{Related Rates}{examplecounter.98}{}}
\newlabel{eex_rr1}{{4.2}{166}{Related Rates}{examplecounter.98}{}}
\pgfsyspdfmark {pgfid303}{15533671}{21824935}
\pgfsyspdfmark {pgfid304}{14288487}{18781704}
\newlabel{ex_rr2}{{99}{166}{Related Rates}{examplecounter.99}{}}
\pgfsyspdfmark {pgfid305}{19793511}{18617864}
\pgfsyspdfmark {pgfid306}{6374688}{29283717}
\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces A sketch of a police car (at bottom) attempting to measure the speed of a car (at right) in Example \ref {ex_rr3}.\relax }}{168}{figure.caption.122}}
\newlabel{fig:rr3}{{4.6}{168}{A sketch of a police car (at bottom) attempting to measure the speed of a car (at right) in Example \ref {ex_rr3}.\relax }{figure.caption.122}{}}
\newlabel{eex_rr2}{{4.2}{168}{Related Rates}{Item.1095}{}}
\pgfsyspdfmark {pgfid307}{14550631}{38714620}
\pgfsyspdfmark {pgfid308}{14288487}{37062849}
\newlabel{ex_rr3}{{100}{168}{Related Rates}{examplecounter.100}{}}
\pgfsyspdfmark {pgfid309}{19793511}{36899009}
\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Tracking a speeding car (at left) with a rotating camera.\relax }}{169}{figure.caption.123}}
\newlabel{fig:rr4}{{4.7}{169}{Tracking a speeding car (at left) with a rotating camera.\relax }{figure.caption.123}{}}
\newlabel{eex_rr3}{{4.2}{169}{Related Rates}{figure.caption.122}{}}
\pgfsyspdfmark {pgfid310}{18713352}{35394225}
\pgfsyspdfmark {pgfid311}{4474142}{33834616}
\newlabel{ex_rr4}{{101}{169}{Related Rates}{examplecounter.101}{}}
\pgfsyspdfmark {pgfid312}{9979166}{33670776}
\newlabel{eq:rr4}{{4.1}{169}{Related Rates}{equation.4.2.1}{}}
\newlabel{eq:rr4b}{{4.2}{170}{Related Rates}{equation.4.2.2}{}}
\newlabel{eex_rr4}{{4.2}{170}{Related Rates}{figure.caption.123}{}}
\pgfsyspdfmark {pgfid313}{20658257}{28026976}
\newlabel{exer:04_02_ex_07}{{7}{171}{Related Rates}{Item.1110}{}}
\newlabel{exer:04_02_ex_12}{{12}{172}{Related Rates}{Item.1132}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces A sketch of the enclosure in Example \ref {ex_opt1}.\relax }}{173}{figure.caption.124}}
\newlabel{fig:opt1}{{4.8}{173}{A sketch of the enclosure in Example \ref {ex_opt1}.\relax }{figure.caption.124}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Optimization}{173}{section.4.3}}
\newlabel{sec:optimization}{{4.3}{173}{Optimization}{section.4.3}{}}
\pgfsyspdfmark {pgfid314}{4474142}{37520659}
\newlabel{ex_opt1}{{102}{173}{Optimization}{examplecounter.102}{}}
\pgfsyspdfmark {pgfid315}{9979166}{37356819}
\newlabel{eex_opt1}{{4.3}{174}{Optimization}{figure.caption.124}{}}
\pgfsyspdfmark {pgfid316}{27462097}{35199723}
\newlabel{idea:optimization}{{6}{174}{Optimization}{keyideacounter.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces A sketch of the enclosure in Example \ref {ex_opt2}.\relax }}{175}{figure.caption.125}}
\newlabel{fig:opt2}{{4.9}{175}{A sketch of the enclosure in Example \ref {ex_opt2}.\relax }{figure.caption.125}{}}
\newlabel{idea:optimizationb}{{6}{175}{Optimization}{keyideacounter.6}{}}
\pgfsyspdfmark {pgfid319}{4474142}{35286275}
\newlabel{ex_opt2}{{103}{175}{Optimization}{examplecounter.103}{}}
\pgfsyspdfmark {pgfid320}{9979166}{35122435}
\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces Running a power line from the power station to an offshore facility with minimal cost in Example \ref {ex_opt3}.\relax }}{176}{figure.caption.126}}
\newlabel{fig:opt3b}{{4.10}{176}{Running a power line from the power station to an offshore facility with minimal cost in Example \ref {ex_opt3}.\relax }{figure.caption.126}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Labeling unknown distances in Example \ref {ex_opt3}.\relax }}{176}{figure.caption.127}}
\newlabel{fig:opt3c}{{4.11}{176}{Labeling unknown distances in Example \ref {ex_opt3}.\relax }{figure.caption.127}{}}
\newlabel{eex_opt2}{{6}{176}{Optimization}{Item.1155}{}}
\pgfsyspdfmark {pgfid321}{14550631}{36228956}
\pgfsyspdfmark {pgfid322}{14288487}{30887772}
\newlabel{ex_opt3}{{104}{176}{Optimization}{examplecounter.104}{}}
\pgfsyspdfmark {pgfid323}{19793511}{30723932}
\newlabel{eex_opt3}{{6}{177}{Optimization}{figure.caption.127}{}}
\pgfsyspdfmark {pgfid324}{17506408}{14995292}
\@writefile{lof}{\contentsline {figure}{\numberline {4.12}{\ignorespaces Graphing $f(x) = \qopname \relax o{sin}x$ and its tangent line at $x={"π}/3$ in order to estimate $\qopname \relax o{sin}1.1$.\relax }}{180}{figure.caption.128}}
\newlabel{fig:diffal1}{{4.12}{180}{Graphing $f(x) = \sin x$ and its tangent line at $x=\pi /3$ in order to estimate $\sin 1.1$.\relax }{figure.caption.128}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Differentials}{180}{section.4.4}}
\newlabel{sec:differentials}{{4.4}{180}{Differentials}{section.4.4}{}}
\newlabel{eq:differential}{{4.3}{181}{Differentials}{equation.4.4.3}{}}
\newlabel{def:differential}{{18}{181}{Differentials}{definitioncounter.18}{}}
\newlabel{idea:differential}{{7}{181}{Differentials}{keyideacounter.7}{}}
\pgfsyspdfmark {pgfid329}{14288487}{44442028}
\newlabel{ex_diffal1}{{105}{182}{Differentials}{examplecounter.105}{}}
\newlabel{eex_diffal1}{{7}{182}{Differentials}{examplecounter.105}{}}
\pgfsyspdfmark {pgfid330}{26651239}{31074045}
\pgfsyspdfmark {pgfid331}{4474142}{46871347}
\newlabel{ex_diffal2}{{106}{183}{Differentials}{examplecounter.106}{}}
\newlabel{eex_diffal2}{{7}{183}{Differentials}{examplecounter.106}{}}
\pgfsyspdfmark {pgfid332}{8843482}{37295928}
\pgfsyspdfmark {pgfid333}{4474142}{27429707}
\newlabel{ex_diffal3}{{107}{183}{Differentials}{examplecounter.107}{}}
\pgfsyspdfmark {pgfid334}{9979166}{27265867}
\newlabel{eex_diffal3}{{7}{184}{Differentials}{Item.1179}{}}
\pgfsyspdfmark {pgfid335}{14550631}{41900058}
\pgfsyspdfmark {pgfid336}{14288487}{27683011}
\newlabel{ex_diffal4}{{108}{184}{Differentials}{examplecounter.108}{}}
\pgfsyspdfmark {pgfid337}{19793511}{27519171}
\newlabel{eex_diffal4}{{7}{185}{Differentials}{examplecounter.108}{}}
\pgfsyspdfmark {pgfid338}{8736392}{35044558}
\newlabel{exer:04_04_ex_35}{{34}{186}{Differentials}{Item.1215}{}}
\newlabel{exer:04_04_ex_36}{{35}{187}{Differentials}{Item.1219}{}}
\newlabel{exer:04_04_ex_34}{{36}{187}{Differentials}{Item.1220}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {5}Integration}{189}{chapter.5}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chapter:integration}{{5}{189}{Integration}{chapter.5}{}}
\@writefile{toc}{\thispagestyle {empty}}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}Antiderivatives and Indefinite Integration}{189}{section.5.1}}
\newlabel{sec:antider}{{5.1}{189}{Antiderivatives and Indefinite Integration}{section.5.1}{}}
\newlabel{def:antider}{{19}{189}{Antiderivatives and Indefinite Integration}{definitioncounter.19}{}}
\newlabel{thm:antideriv_const}{{34}{190}{Antiderivatives and Indefinite Integration}{theoremcounter.34}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces Understanding the indefinite integral notation.\relax }}{190}{figure.caption.129}}
\newlabel{fig:anti1}{{5.1}{190}{Understanding the indefinite integral notation.\relax }{figure.caption.129}{}}
\pgfsyspdfmark {pgfid343}{14288487}{15683886}
\newlabel{ex_anti2}{{109}{190}{Antiderivatives and Indefinite Integration}{examplecounter.109}{}}
\pgfsyspdfmark {pgfid344}{19793511}{15520046}
\newlabel{eex_anti2}{{34}{191}{Antiderivatives and Indefinite Integration}{examplecounter.109}{}}
\pgfsyspdfmark {pgfid345}{5719326}{42178297}
\pgfsyspdfmark {pgfid346}{4474142}{22910480}
\newlabel{ex_anti3}{{110}{191}{Antiderivatives and Indefinite Integration}{examplecounter.110}{}}
\pgfsyspdfmark {pgfid347}{9979166}{22746640}
\newlabel{eex_anti3}{{34}{192}{Antiderivatives and Indefinite Integration}{examplecounter.110}{}}
\pgfsyspdfmark {pgfid348}{23315597}{30140904}
\newlabel{thm:indef_alg}{{35}{193}{Antiderivatives and Indefinite Integration}{theoremcounter.35}{}}
\pgfsyspdfmark {pgfid350}{4474142}{43725619}
\newlabel{ex_anti4}{{111}{195}{Antiderivatives and Indefinite Integration}{examplecounter.111}{}}
\newlabel{eex_anti4}{{35}{195}{Antiderivatives and Indefinite Integration}{examplecounter.111}{}}
\pgfsyspdfmark {pgfid351}{23147592}{19939494}
\pgfsyspdfmark {pgfid352}{4474142}{18530470}
\newlabel{ex_anti5}{{112}{195}{Antiderivatives and Indefinite Integration}{examplecounter.112}{}}
\pgfsyspdfmark {pgfid353}{9979166}{18366630}
\newlabel{eex_anti5}{{35}{196}{Antiderivatives and Indefinite Integration}{examplecounter.112}{}}
\pgfsyspdfmark {pgfid354}{22441703}{35060288}
\@writefile{lof}{\contentsline {figure}{\numberline {5.2}{\ignorespaces The area under a constant velocity function corresponds to distance traveled.\relax }}{199}{figure.caption.130}}
\newlabel{fig:defint1}{{5.2}{199}{The area under a constant velocity function corresponds to distance traveled.\relax }{figure.caption.130}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.3}{\ignorespaces The total displacement is the area above the $t$--axis minus the area below the $t$--axis.\relax }}{199}{figure.caption.131}}
\newlabel{fig:defint2}{{5.3}{199}{The total displacement is the area above the $t$--axis minus the area below the $t$--axis.\relax }{figure.caption.131}{}}
\@writefile{toc}{\thispagestyle {empty}}
\@writefile{toc}{\contentsline {section}{\numberline {5.2}The Definite Integral}{199}{section.5.2}}
\newlabel{sec:def_int}{{5.2}{199}{The Definite Integral}{section.5.2}{}}
\pgfsyspdfmark {pgfid355}{4474142}{23160024}
\newlabel{ex_defint3}{{113}{199}{The Definite Integral}{examplecounter.113}{}}
\pgfsyspdfmark {pgfid356}{9979166}{22996184}
\@writefile{lof}{\contentsline {figure}{\numberline {5.4}{\ignorespaces A graph of $v(t)=-32t+48$; the shaded areas help determine displacement.\relax }}{200}{figure.caption.132}}
\newlabel{fig:defint3}{{5.4}{200}{A graph of $v(t)=-32t+48$; the shaded areas help determine displacement.\relax }{figure.caption.132}{}}
\pgfsyspdfmark {pgfid357}{15533671}{17174444}
\newlabel{eex_defint3}{{5.2}{201}{The Definite Integral}{figure.caption.132}{}}
\pgfsyspdfmark {pgfid358}{23887432}{40764571}
\newlabel{def:def_int}{{20}{201}{The Definite Integral}{definitioncounter.20}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.5}{\ignorespaces A graph of $f(x)$ in Example \ref {ex_defint4}.\relax }}{202}{figure.caption.133}}
\newlabel{fig:defint4}{{5.5}{202}{A graph of $f(x)$ in Example \ref {ex_defint4}.\relax }{figure.caption.133}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.6}{\ignorespaces A graph of $5f$ in Example \ref {ex_defint4}. (Yes, it looks just like the graph of $f$ in Figure \ref {fig:defint4}, just with a different $y$-scale.)\relax }}{202}{figure.caption.134}}
\newlabel{fig:defint4a}{{5.6}{202}{A graph of $5f$ in Example \ref {ex_defint4}. (Yes, it looks just like the graph of $f$ in Figure \ref {fig:defint4}, just with a different $y$-scale.)\relax }{figure.caption.134}{}}
\pgfsyspdfmark {pgfid360}{14288487}{45083899}
\newlabel{ex_defint4}{{114}{202}{The Definite Integral}{examplecounter.114}{}}
\newlabel{eex_defint4}{{20}{202}{The Definite Integral}{Item.1313}{}}
\pgfsyspdfmark {pgfid361}{14550631}{16782740}
\newlabel{thm:defintprop}{{36}{203}{The Definite Integral}{theoremcounter.36}{}}
\newlabel{eq:defint1}{{5.1}{203}{The Definite Integral}{equation.5.2.1}{}}
\newlabel{eq:defint2}{{5.2}{203}{The Definite Integral}{equation.5.2.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.7}{\ignorespaces A graph of a function in Example \ref {ex_defint5}.\relax }}{204}{figure.caption.135}}
\newlabel{fig:defint5}{{5.7}{204}{A graph of a function in Example \ref {ex_defint5}.\relax }{figure.caption.135}{}}
\pgfsyspdfmark {pgfid363}{14288487}{31174241}
\newlabel{ex_defint5}{{115}{204}{The Definite Integral}{examplecounter.115}{}}
\newlabel{eex_defint5}{{36}{204}{The Definite Integral}{Item.1327}{}}
\pgfsyspdfmark {pgfid364}{14550631}{14208860}
\@writefile{lof}{\contentsline {figure}{\numberline {5.8}{\ignorespaces A graph of $f(x) = 2x-4$ in (a) and $f(x) = \sqrt {9-x^2}$ in (b), from Example \ref {ex_defint8}.\relax }}{205}{figure.caption.136}}
\newlabel{fig:defint8}{{5.8}{205}{A graph of $f(x) = 2x-4$ in (a) and $f(x) = \sqrt {9-x^2}$ in (b), from Example \ref {ex_defint8}.\relax }{figure.caption.136}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.9}{\ignorespaces A graph of a velocity in Example \ref {ex_defint6}.\relax }}{205}{figure.caption.137}}
\newlabel{fig:defint6}{{5.9}{205}{A graph of a velocity in Example \ref {ex_defint6}.\relax }{figure.caption.137}{}}
\pgfsyspdfmark {pgfid365}{4474142}{44512051}
\newlabel{ex_defint8}{{116}{205}{The Definite Integral}{examplecounter.116}{}}
\newlabel{eex_defint8}{{2}{205}{The Definite Integral}{Item.1329}{}}
\pgfsyspdfmark {pgfid366}{6374688}{24250083}
\pgfsyspdfmark {pgfid367}{4474142}{22237020}
\newlabel{ex_defint6}{{117}{205}{The Definite Integral}{examplecounter.117}{}}
\pgfsyspdfmark {pgfid368}{9979166}{22073180}
\@writefile{lof}{\contentsline {figure}{\numberline {5.10}{\ignorespaces What is the area below $y=x^2$ on $[0,3]$? The region is not a usual geometric shape.\relax }}{206}{figure.caption.138}}
\newlabel{fig:defint7}{{5.10}{206}{What is the area below $y=x^2$ on $[0,3]$? The region is not a usual geometric shape.\relax }{figure.caption.138}{}}
\newlabel{eex_defint6}{{36}{206}{The Definite Integral}{examplecounter.117}{}}
\pgfsyspdfmark {pgfid369}{34805777}{45134643}
\@writefile{lof}{\contentsline {figure}{\numberline {5.11}{\ignorespaces A graph of $f(x) = 4x-x^2$. What is the area of the shaded region?\relax }}{210}{figure.caption.139}}
\newlabel{fig:rie1a}{{5.11}{210}{A graph of $f(x) = 4x-x^2$. What is the area of the shaded region?\relax }{figure.caption.139}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.12}{\ignorespaces Approximating $\DOTSI \intop \ilimits@ _0^4(4x-x^2)\ dx$ using rectangles. The heights of the rectangles are determined using different rules.\relax }}{210}{figure.caption.140}}
\newlabel{fig:rie1b}{{5.12}{210}{Approximating $\int _0^4(4x-x^2)\ dx$ using rectangles. The heights of the rectangles are determined using different rules.\relax }{figure.caption.140}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.3}Riemann Sums}{210}{section.5.3}}
\newlabel{sec:riemann}{{5.3}{210}{Riemann Sums}{section.5.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.13}{\ignorespaces Approximating $\DOTSI \intop \ilimits@ _0^4(4x-x^2)\ dx$ using the Left Hand Rule in Example \ref {ex_rie2}.\relax }}{211}{figure.caption.141}}
\newlabel{fig:rie2a}{{5.13}{211}{Approximating $\int _0^4(4x-x^2)\ dx$ using the Left Hand Rule in Example \ref {ex_rie2}.\relax }{figure.caption.141}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.14}{\ignorespaces Approximating $\DOTSI \intop \ilimits@ _0^4(4x-x^2)\ dx$ using the Right Hand Rule in Example \ref {ex_rie2}.\relax }}{211}{figure.caption.142}}
\newlabel{fig:rie2b}{{5.14}{211}{Approximating $\int _0^4(4x-x^2)\ dx$ using the Right Hand Rule in Example \ref {ex_rie2}.\relax }{figure.caption.142}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.15}{\ignorespaces Approximating $\DOTSI \intop \ilimits@ _0^4(4x-x^2)\ dx$ using the Midpoint Rule in Example \ref {ex_rie2}.\relax }}{211}{figure.caption.143}}
\newlabel{fig:rie2c}{{5.15}{211}{Approximating $\int _0^4(4x-x^2)\ dx$ using the Midpoint Rule in Example \ref {ex_rie2}.\relax }{figure.caption.143}{}}