-
Notifications
You must be signed in to change notification settings - Fork 4
/
main.py
102 lines (84 loc) · 2.85 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright 2017 Abien Fred Agarap
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========================================================================
"""Main program implementing the MLP class"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
__version__ = "0.1"
__author__ = "Abien Fred Agarap"
import argparse
import MLP
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
BATCH_SIZE = 200
LEARNING_RATE = 1e-2
NUM_CLASSES = 2
NUM_NODES = [500, 500, 500]
def parse_args():
parser = argparse.ArgumentParser(
description="MLP written using TensorFlow, for Wisconsin Breast Cancer Diagnostic Dataset"
)
group = parser.add_argument_group("Arguments")
group.add_argument(
"-n", "--num_epochs", required=True, type=int, help="number of epochs"
)
group.add_argument(
"-l",
"--log_path",
required=True,
type=str,
help="path where to save the TensorBoard logs",
)
group.add_argument(
"-r",
"--result_path",
required=True,
type=str,
help="path where to save actual and predicted labels array",
)
arguments = parser.parse_args()
return arguments
def main(arguments):
# load the features of the dataset
features = datasets.load_breast_cancer().data
# standardize the features
features = StandardScaler().fit_transform(features)
# get the number of features
num_features = features.shape[1]
# load the labels for the features
labels = datasets.load_breast_cancer().target
train_features, test_features, train_labels, test_labels = train_test_split(
features, labels, test_size=0.20, stratify=labels
)
model = MLP.MLP(
alpha=LEARNING_RATE,
batch_size=BATCH_SIZE,
node_size=NUM_NODES,
num_classes=NUM_CLASSES,
num_features=num_features,
)
model.train(
num_epochs=arguments.num_epochs,
log_path=arguments.log_path,
train_data=[train_features, train_labels],
train_size=train_features.shape[0],
test_data=[test_features, test_labels],
test_size=test_features.shape[0],
result_path=arguments.result_path,
)
if __name__ == "__main__":
args = parse_args()
main(args)