forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deviceQueryDrv.cpp
387 lines (339 loc) · 16.1 KB
/
deviceQueryDrv.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* This sample queries the properties of the CUDA devices present
* in the system.
*/
// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <cuda.h>
#include <helper_cuda_drvapi.h>
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
CUdevice dev;
int major = 0, minor = 0;
int deviceCount = 0;
char deviceName[256];
printf("%s Starting...\n\n", argv[0]);
// note your project will need to link with cuda.lib files on windows
printf("CUDA Device Query (Driver API) statically linked version \n");
checkCudaErrors(cuInit(0));
checkCudaErrors(cuDeviceGetCount(&deviceCount));
// This function call returns 0 if there are no CUDA capable devices.
if (deviceCount == 0) {
printf("There are no available device(s) that support CUDA\n");
} else {
printf("Detected %d CUDA Capable device(s)\n", deviceCount);
}
for (dev = 0; dev < deviceCount; ++dev) {
checkCudaErrors(cuDeviceGetAttribute(
&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, dev));
checkCudaErrors(cuDeviceGetAttribute(
&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, dev));
checkCudaErrors(cuDeviceGetName(deviceName, 256, dev));
printf("\nDevice %d: \"%s\"\n", dev, deviceName);
int driverVersion = 0;
checkCudaErrors(cuDriverGetVersion(&driverVersion));
printf(" CUDA Driver Version: %d.%d\n",
driverVersion / 1000, (driverVersion % 100) / 10);
printf(" CUDA Capability Major/Minor version number: %d.%d\n", major,
minor);
size_t totalGlobalMem;
checkCudaErrors(cuDeviceTotalMem(&totalGlobalMem, dev));
char msg[256];
SPRINTF(msg,
" Total amount of global memory: %.0f MBytes "
"(%llu bytes)\n",
(float)totalGlobalMem / 1048576.0f,
(unsigned long long)totalGlobalMem);
printf("%s", msg);
int multiProcessorCount;
getCudaAttribute<int>(&multiProcessorCount,
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, dev);
printf(" (%2d) Multiprocessors, (%3d) CUDA Cores/MP: %d CUDA Cores\n",
multiProcessorCount, _ConvertSMVer2CoresDRV(major, minor),
_ConvertSMVer2CoresDRV(major, minor) * multiProcessorCount);
int clockRate;
getCudaAttribute<int>(&clockRate, CU_DEVICE_ATTRIBUTE_CLOCK_RATE, dev);
printf(
" GPU Max Clock rate: %.0f MHz (%0.2f "
"GHz)\n",
clockRate * 1e-3f, clockRate * 1e-6f);
int memoryClock;
getCudaAttribute<int>(&memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE,
dev);
printf(" Memory Clock rate: %.0f Mhz\n",
memoryClock * 1e-3f);
int memBusWidth;
getCudaAttribute<int>(&memBusWidth,
CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev);
printf(" Memory Bus Width: %d-bit\n",
memBusWidth);
int L2CacheSize;
getCudaAttribute<int>(&L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev);
if (L2CacheSize) {
printf(" L2 Cache Size: %d bytes\n",
L2CacheSize);
}
int maxTex1D, maxTex2D[2], maxTex3D[3];
getCudaAttribute<int>(&maxTex1D,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_WIDTH, dev);
getCudaAttribute<int>(&maxTex2D[0],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_WIDTH, dev);
getCudaAttribute<int>(&maxTex2D[1],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_HEIGHT, dev);
getCudaAttribute<int>(&maxTex3D[0],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH, dev);
getCudaAttribute<int>(&maxTex3D[1],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT, dev);
getCudaAttribute<int>(&maxTex3D[2],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH, dev);
printf(
" Max Texture Dimension Sizes 1D=(%d) 2D=(%d, %d) "
"3D=(%d, %d, %d)\n",
maxTex1D, maxTex2D[0], maxTex2D[1], maxTex3D[0], maxTex3D[1],
maxTex3D[2]);
int maxTex1DLayered[2];
getCudaAttribute<int>(&maxTex1DLayered[0],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_WIDTH,
dev);
getCudaAttribute<int>(&maxTex1DLayered[1],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_LAYERS,
dev);
printf(
" Maximum Layered 1D Texture Size, (num) layers 1D=(%d), %d layers\n",
maxTex1DLayered[0], maxTex1DLayered[1]);
int maxTex2DLayered[3];
getCudaAttribute<int>(&maxTex2DLayered[0],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_WIDTH,
dev);
getCudaAttribute<int>(&maxTex2DLayered[1],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_HEIGHT,
dev);
getCudaAttribute<int>(&maxTex2DLayered[2],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_LAYERS,
dev);
printf(
" Maximum Layered 2D Texture Size, (num) layers 2D=(%d, %d), %d "
"layers\n",
maxTex2DLayered[0], maxTex2DLayered[1], maxTex2DLayered[2]);
int totalConstantMemory;
getCudaAttribute<int>(&totalConstantMemory,
CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY, dev);
printf(" Total amount of constant memory: %u bytes\n",
totalConstantMemory);
int sharedMemPerBlock;
getCudaAttribute<int>(&sharedMemPerBlock,
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK, dev);
printf(" Total amount of shared memory per block: %u bytes\n",
sharedMemPerBlock);
int regsPerBlock;
getCudaAttribute<int>(®sPerBlock,
CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK, dev);
printf(" Total number of registers available per block: %d\n",
regsPerBlock);
int warpSize;
getCudaAttribute<int>(&warpSize, CU_DEVICE_ATTRIBUTE_WARP_SIZE, dev);
printf(" Warp size: %d\n", warpSize);
int maxThreadsPerMultiProcessor;
getCudaAttribute<int>(&maxThreadsPerMultiProcessor,
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR,
dev);
printf(" Maximum number of threads per multiprocessor: %d\n",
maxThreadsPerMultiProcessor);
int maxThreadsPerBlock;
getCudaAttribute<int>(&maxThreadsPerBlock,
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK, dev);
printf(" Maximum number of threads per block: %d\n",
maxThreadsPerBlock);
int blockDim[3];
getCudaAttribute<int>(&blockDim[0], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X,
dev);
getCudaAttribute<int>(&blockDim[1], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y,
dev);
getCudaAttribute<int>(&blockDim[2], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z,
dev);
printf(" Max dimension size of a thread block (x,y,z): (%d, %d, %d)\n",
blockDim[0], blockDim[1], blockDim[2]);
int gridDim[3];
getCudaAttribute<int>(&gridDim[0], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, dev);
getCudaAttribute<int>(&gridDim[1], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y, dev);
getCudaAttribute<int>(&gridDim[2], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z, dev);
printf(" Max dimension size of a grid size (x,y,z): (%d, %d, %d)\n",
gridDim[0], gridDim[1], gridDim[2]);
int textureAlign;
getCudaAttribute<int>(&textureAlign, CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT,
dev);
printf(" Texture alignment: %u bytes\n",
textureAlign);
int memPitch;
getCudaAttribute<int>(&memPitch, CU_DEVICE_ATTRIBUTE_MAX_PITCH, dev);
printf(" Maximum memory pitch: %u bytes\n",
memPitch);
int gpuOverlap;
getCudaAttribute<int>(&gpuOverlap, CU_DEVICE_ATTRIBUTE_GPU_OVERLAP, dev);
int asyncEngineCount;
getCudaAttribute<int>(&asyncEngineCount,
CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT, dev);
printf(
" Concurrent copy and kernel execution: %s with %d copy "
"engine(s)\n",
(gpuOverlap ? "Yes" : "No"), asyncEngineCount);
int kernelExecTimeoutEnabled;
getCudaAttribute<int>(&kernelExecTimeoutEnabled,
CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT, dev);
printf(" Run time limit on kernels: %s\n",
kernelExecTimeoutEnabled ? "Yes" : "No");
int integrated;
getCudaAttribute<int>(&integrated, CU_DEVICE_ATTRIBUTE_INTEGRATED, dev);
printf(" Integrated GPU sharing Host Memory: %s\n",
integrated ? "Yes" : "No");
int canMapHostMemory;
getCudaAttribute<int>(&canMapHostMemory,
CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, dev);
printf(" Support host page-locked memory mapping: %s\n",
canMapHostMemory ? "Yes" : "No");
int concurrentKernels;
getCudaAttribute<int>(&concurrentKernels,
CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS, dev);
printf(" Concurrent kernel execution: %s\n",
concurrentKernels ? "Yes" : "No");
int surfaceAlignment;
getCudaAttribute<int>(&surfaceAlignment,
CU_DEVICE_ATTRIBUTE_SURFACE_ALIGNMENT, dev);
printf(" Alignment requirement for Surfaces: %s\n",
surfaceAlignment ? "Yes" : "No");
int eccEnabled;
getCudaAttribute<int>(&eccEnabled, CU_DEVICE_ATTRIBUTE_ECC_ENABLED, dev);
printf(" Device has ECC support: %s\n",
eccEnabled ? "Enabled" : "Disabled");
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
int tccDriver;
getCudaAttribute<int>(&tccDriver, CU_DEVICE_ATTRIBUTE_TCC_DRIVER, dev);
printf(" CUDA Device Driver Mode (TCC or WDDM): %s\n",
tccDriver ? "TCC (Tesla Compute Cluster Driver)"
: "WDDM (Windows Display Driver Model)");
#endif
int unifiedAddressing;
getCudaAttribute<int>(&unifiedAddressing,
CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING, dev);
printf(" Device supports Unified Addressing (UVA): %s\n",
unifiedAddressing ? "Yes" : "No");
int managedMemory;
getCudaAttribute<int>(&managedMemory, CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY,
dev);
printf(" Device supports Managed Memory: %s\n",
managedMemory ? "Yes" : "No");
int computePreemption;
getCudaAttribute<int>(&computePreemption,
CU_DEVICE_ATTRIBUTE_COMPUTE_PREEMPTION_SUPPORTED,
dev);
printf(" Device supports Compute Preemption: %s\n",
computePreemption ? "Yes" : "No");
int cooperativeLaunch;
getCudaAttribute<int>(&cooperativeLaunch,
CU_DEVICE_ATTRIBUTE_COOPERATIVE_LAUNCH, dev);
printf(" Supports Cooperative Kernel Launch: %s\n",
cooperativeLaunch ? "Yes" : "No");
int cooperativeMultiDevLaunch;
getCudaAttribute<int>(&cooperativeMultiDevLaunch,
CU_DEVICE_ATTRIBUTE_COOPERATIVE_MULTI_DEVICE_LAUNCH,
dev);
printf(" Supports MultiDevice Co-op Kernel Launch: %s\n",
cooperativeMultiDevLaunch ? "Yes" : "No");
int pciDomainID, pciBusID, pciDeviceID;
getCudaAttribute<int>(&pciDomainID, CU_DEVICE_ATTRIBUTE_PCI_DOMAIN_ID, dev);
getCudaAttribute<int>(&pciBusID, CU_DEVICE_ATTRIBUTE_PCI_BUS_ID, dev);
getCudaAttribute<int>(&pciDeviceID, CU_DEVICE_ATTRIBUTE_PCI_DEVICE_ID, dev);
printf(" Device PCI Domain ID / Bus ID / location ID: %d / %d / %d\n",
pciDomainID, pciBusID, pciDeviceID);
const char *sComputeMode[] = {
"Default (multiple host threads can use ::cudaSetDevice() with device "
"simultaneously)",
"Exclusive (only one host thread in one process is able to use "
"::cudaSetDevice() with this device)",
"Prohibited (no host thread can use ::cudaSetDevice() with this "
"device)",
"Exclusive Process (many threads in one process is able to use "
"::cudaSetDevice() with this device)",
"Unknown", NULL};
int computeMode;
getCudaAttribute<int>(&computeMode, CU_DEVICE_ATTRIBUTE_COMPUTE_MODE, dev);
printf(" Compute Mode:\n");
printf(" < %s >\n", sComputeMode[computeMode]);
}
// If there are 2 or more GPUs, query to determine whether RDMA is supported
if (deviceCount >= 2) {
int gpuid[64]; // we want to find the first two GPUs that can support P2P
int gpu_p2p_count = 0;
int tccDriver = 0;
for (int i = 0; i < deviceCount; i++) {
checkCudaErrors(cuDeviceGetAttribute(
&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, i));
checkCudaErrors(cuDeviceGetAttribute(
&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, i));
getCudaAttribute<int>(&tccDriver, CU_DEVICE_ATTRIBUTE_TCC_DRIVER, i);
// Only boards based on Fermi or later can support P2P
if ((major >= 2)
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
// on Windows (64-bit), the Tesla Compute Cluster driver for windows
// must be enabled to support this
&& tccDriver
#endif
) {
// This is an array of P2P capable GPUs
gpuid[gpu_p2p_count++] = i;
}
}
// Show all the combinations of support P2P GPUs
int can_access_peer;
char deviceName0[256], deviceName1[256];
if (gpu_p2p_count >= 2) {
for (int i = 0; i < gpu_p2p_count; i++) {
for (int j = 0; j < gpu_p2p_count; j++) {
if (gpuid[i] == gpuid[j]) {
continue;
}
checkCudaErrors(
cuDeviceCanAccessPeer(&can_access_peer, gpuid[i], gpuid[j]));
checkCudaErrors(cuDeviceGetName(deviceName0, 256, gpuid[i]));
checkCudaErrors(cuDeviceGetName(deviceName1, 256, gpuid[j]));
printf(
"> Peer-to-Peer (P2P) access from %s (GPU%d) -> %s (GPU%d) : "
"%s\n",
deviceName0, gpuid[i], deviceName1, gpuid[j],
can_access_peer ? "Yes" : "No");
}
}
}
}
printf("Result = PASS\n");
exit(EXIT_SUCCESS);
}